Metalloproteins in Developing Artemia

  • Roger A. Acey
  • Benton N. Yoshida
  • Martin E. Edep
Part of the NATO ASI Series book series (NSSA, volume 174)


There is an increasing awareness of the importance of essential trace metals, particularly zinc and copper, in normal cell growth and development [1]. Central to this theme has been the postulated direct involvement of zinc in the control of gene expression [2]. A number of zinc metalloproteins have been reported to be involved in replication and transcription, including RNA and DNA polymerases [3]. Thus, the question arises as to the mechanism by which the activity of these enzymes might be directly regulated by cytosolic trace metals.


Metal Binding Zinc Level High Molecular Weight Protein Essential Trace Metal Cadmium Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Bolze, R. D. Reeves, F. E. Lindbeck and J. M. Eiders, Influence of zinc on growth, somatomedin, and glycosaminoglycan metabolism in rats, Am. J. Physiol. 252:E21 (1987).PubMedGoogle Scholar
  2. 2.
    B. L. Vallee, A role for zinc in gene expression, J. Inner. Metab. Dis. 6:31 (1983).CrossRefGoogle Scholar
  3. 3.
    D. P. Giedroc, K. M. Keating, C. T. Martin, K. R. Williams and J. E. Coleman, Zinc metalloproteins involved in replication and transcription, J. Inorganic Biochem. 28:155 (1986).CrossRefGoogle Scholar
  4. 4.
    J. S. Hanas, D. J. Hazuda, D. R. Bogenhagen, F. Y.-H. Wu and C.-W. Wu, Xenopus transcription factor A requires a zinc for binding to the 5s RNA gene, Biol. Chem. 258:14120 (1983).Google Scholar
  5. 5.
    A. Klug and D. Rhodes, “Zinc fingers”: a novel protein motif for nucleic acid recognition,Trends Biol. Sci. 12:464 (1987).CrossRefGoogle Scholar
  6. 6.
    J. T. Kadonaga, K. R. Carner, F. R. Masiarz and R. Tjian, Isolation of cDNA encoding transcription factor Sp 1 and functional analysis of the DNA binding domain, Cell 51:1079 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    T. A. Hartshorne, H. Blumberg and E. T. Young, Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA, Nature 320:283 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    U. B. Rosenberg, C. Schroder, A. Preiss, A. Kielin, S. Cote, I. Riede and H. Jackel, Structural homology of the product of the Drosophila Krupple gene with Xenopus transcription factor IIIA, Nature 319:336 (1986).CrossRefGoogle Scholar
  9. 9.
    D. Tautz, R. Lehmann, H. Schnurch, R. Schuh, E. Scifert, A. Kienlin, K. Jones and H. Jackel, Finger protein of novel structure encoded by Hunchback, a second member of the gap class of Drosophila segmentation genes, Nature 327:383 (1987).CrossRefGoogle Scholar
  10. 10.
    A. Vincent, H. V. Colot and M. Rosbash, Sequence and structure of the Serendipity locus of Drosophila melanogaster, J. Mol. Biol. 186:149 (1985).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Yutaka and J. H. R. Kagi, Metallothionein, Trends Biochem. Sci. 3: 90 (1978).CrossRefGoogle Scholar
  12. 12.
    D. H. Hamer, Metallothionein, Ann. Rev. Biochem. 55:913 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    J. H. R. Kagi, M. Vasak, K. Lerch, D. E. O. Gilg, P. Hunziker, W. R. Bernhard and M. Good, Structure of mammalian metallothionein, Environ. Health. Perspect. 54:93 (1984).PubMedGoogle Scholar
  14. 14.
    M. Karin, M. Imagawa, R. J. Imbra, R. Chiu, A. Heguy, A. Haslinger, T. Cooke, S. Satabhama, C. Jonat and P. Herrlich, Hormonal and environmental control of metallothionein gene expression, in: “Transcriptional Control Mechanisms,” 1D. Granner, G. Rosenfeld, S. Chang, eds., Alan R. Liss, New York (1987).Google Scholar
  15. 15.
    P. F. Searle, Metallothionein gene regulation, Biochem. Soc. Trans. 15:584 (1987).PubMedGoogle Scholar
  16. 16.
    K. E. Mayo and R. D. Palmiter, Glucocorticoid regulation of the mouse metallothionein 1 gene is selectively lost following amplification of the gene, J. Biol. Chem. 257:306 (1982).Google Scholar
  17. 17.
    A. O. Udom and F. O. Brady, Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein, Biochem. J. 187:329 (1980).PubMedGoogle Scholar
  18. 18.
    D. H. Hamer, Metallothionein gene regulation in Menkes’ Syndrome, Arch. Dermatol. 123:1384a (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    G. W. Evans, R. S. Dubois and K. M. Hambridge, Wilson’s disease: identification of an abnormal copper-binding protein, Science 181:1175 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    G. K. Andrews, E. D. Adamson and L. Gedamu, The ontogeny of expression of murine metallothionein: comparison with the α-fetogene, Dev. Biol. 103:294 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    J. F. B. Mercer and A. Grimes, Variation in the amounts of hepatic copper, zinc and metallothionein mRNA during development of the rat, Biochem. J. 238:23 (1986).PubMedGoogle Scholar
  22. 22.
    M. Nemer, E. C. Travaglini, E. Rondinelli and J. D’Alonzo, Developmental regulation, induction and embryonic tissue specificity of sea urchin metallothionein gene expression, Dev. Biol. 102:471 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Thall and R. Acey, Cadmium binding proteins in developing Artemia salina, Fed. Proc. 44:1462 (1985).Google Scholar
  24. 24.
    Y. H. Nakanishi, T. Iwasaki, T. Okigaki and H. Kato, Cytological studies of Artemia salina. Embryonic development without cell multiplication after the blastula in encysted dry eggs, Annot. Zool. Japon. 35:223 (1962).Google Scholar
  25. 25.
    J. C. Bagshaw and R. Acey, Stage-specific gene expression in Artemia in: “Biochemistry of Artemia Development,” J. C. Bagshaw and A. H. Warner, eds., University Microfilms International, Ann Arbor (1979).Google Scholar
  26. 26.
    O. H. Lowry, N. J. Rosebrough, L. A. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265 (1951).PubMedGoogle Scholar
  27. 27.
    D. L. Eaton and B. F. Toal, Evaluation of the Cd/Hemoglobin affinity assay for the rapid determination of metallothionein in biological tissues, Toxicol. Appl. Pharmacol. 66:134 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    K. Suzuki, Y. Ebihara, H. Akitomi, M. Nishikawa and R. Kawamura, Change in ratio of the two hepatic isometallothioneins with develoment from prenatal to neonatal rats, Comp. Biochem. Physiol. 76C: 33 (1983).Google Scholar
  29. 29.
    D. G. Wilkerson and M. Nemer, Metallothionein genes MTa and MTb expressed under distinct quantitative and tissue specific regulation in sea urchin embryos, Mol. Cellular Biol. 7:48 (1987).Google Scholar
  30. 30.
    J. Pande, M. Vasak and J. H. R. Kagi, Interaction of lysine residues with the metal thiolate Clusters in metallothionein, Biochemistry 24:6717 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    R. Acey, Induction of a zinc binding protein during the early embryonic development of the brine shrimp Artemia salina, J. Cell. Biochem. Supplement D:354 (1988).Google Scholar
  32. 32.
    J. C. Steffens, D. F. Hunt and B. G. Williams, Accumulation of nonprotein metal binding Polypeptides (∂-glutamyl-cysteinyl) n-glycine in selected cadmium-resistant tomato cells, J. Biol. Chem. 261:13879 (1986).PubMedGoogle Scholar
  33. 33.
    H. Ohtake, T. Suyemitsu and M. Koga, Sea urchin (Anthocidaris crassispina) egg zinc-binding protein, Biochem. J. 211:109 (1983).PubMedGoogle Scholar
  34. 34.
    A. Cano, J. Crucus, I. Estepa, M. E. Gallego, M. A. G. Sillero, C. F. Heredia, P. Liorente, A. Olalla, C. Osuna, A. Pestana, J. Renart, A. Ruiz, L. Sastre, J. Sebastian and A. Sillero, Developmental changes of enzyme levels during Artemia salina differentiation, in: “Biochemistry of Artemia Development,” J. C. Bagshaw and A. H. Warner, eds., University Microfilms International, Ann Arbor (1979).Google Scholar
  35. 35.
    D. K. McClean and A. H. Warner, Aspects of nucleic acid metabolism during development of the brine shrimp Artemia salina, Develop. Biol. 24:88 (1971).PubMedCrossRefGoogle Scholar
  36. 36.
    A. J. Kraker and D. H. Petering, Tumor-host zinc metabolism: the central role of metallothionein, Biol. Trace Element Res. 5:363 (1983).CrossRefGoogle Scholar
  37. 37.
    C. G. Vallejo, F. de Luchi, J. Laynez and R. Marco, The role of cytochrome oxidase in the resumption of the development of Artemia dormant cysts, in: “The Brine Shrimp Artemia,” G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wettren (1980).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Roger A. Acey
    • 1
  • Benton N. Yoshida
    • 2
  • Martin E. Edep
    • 3
  1. 1.Department of ChemistryCalifornia State UniversityLong BeachUSA
  2. 2.Department of BiologyCalifornia Institute of TechnologyUSA
  3. 3.San Francisco School of MedicineUniversity of CaliforniaUSA

Personalised recommendations