Artemia Trehalase: Regulation by Factors that Also Control Resumption of Development

  • Carmen G. Vallejo
Part of the NATO ASI Series book series (NSSA, volume 174)


The ability of the dry dormant embryo of Artemia to survive for decades has been related to the presence in the cyst of a high concentration of trehalose[1]. This sugar apparently allows the organism to escape the irreversible damage that complete dehydration produces in membranes[2]. On the other hand, after resumption of development trehalose is used as the bulk source of energy and the bulk substrate of respiration[3].


Particulate Fraction Brine Shrimp Yolk Granule Artemia Salina Trehalase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. B. Busa, J. H. Crowe and G. B. Matson, Intracellular pH and the metabolic Status of dormant end developing Artemia embryos, Arch. Biochem. Biophys. 216:711 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    J. H. Crowe, L. M. Crowe, J. F. Carpenter and C. Aurell Wistrom, Stabilization of dry phospholipid bilayers and proteins by sugars, Biochem. J. 242:1 (1987).PubMedGoogle Scholar
  3. 3.
    J. S. Clegg and F. P. Conte, A review of the cellular and developmental biology of Artemia, in “The Brine Shrimp Artemia”, Vol 2, G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers eds., Universa Press, Wetteren (1980).Google Scholar
  4. 4.
    C. G. Vallejo, F. De Luchi and R. Marco, The role of cytochrome oxidase in the resumption of the development of Artemia dormant cysts, in “The Brine Shrimp Artemia”, Vol. 2, G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren (1980).Google Scholar
  5. 5.
    P. Ballario, M. Bergami, M. G. Cacace, F. Scala and L. Silvestri, αα-Trehalase from the brine shrimp Artemia salina. Purification and properties, Comp. Biochem. Physiol. 61B:265 (1978).Google Scholar
  6. 6.
    C. G. Vallejo, M. A. G. Sillero and R. Marco, Mitochondrial maturation during Artemia salina embryogenesis. General description of the process, Cell. Mol. Biol. 25:113 (1979).Google Scholar
  7. 7.
    C. G. Vallejo, R. Perona, R. Garesse and R. Marco, The stability of the yolk granules of Artemia. An improved method for their isolation and study, Cell Diff. 10:343 (1981).CrossRefGoogle Scholar
  8. 8.
    B. Ezquieta and C. G. Vallejo, The trypsin-like proteinase of Artemia: yolk localization and developmental activation, Comp. Biochem. Physiol. 82B:731 (1985).Google Scholar
  9. 9.
    E. Roggen and H. Siegers, Isolation and characterization of cytoplasmic poly(A)Polymerase from cryptobiotic gastrulae of Artemia salina, Eur. J. Biochem. 147:225 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Perona and C. G. Vallejo, The lysosomal Proteinase of Artemia. Purification and characterization, Eur. J. Biochem. 124:357 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Herbert, P. J. Phipss and R. E. Strange, Chemical analysis of microbial cells, in “Methods in Microbiology”, Vol. 5B, Academic Press, London (1971).Google Scholar
  12. 12.
    G. D. Reinhart, Influence of Polyethylene glycols on the kinetics of rat liver phosphofructokinase, J. Biol. Chem. 255: 10576 (1980).PubMedGoogle Scholar
  13. 13.
    L. Bosca, J. J. Aragon and A. Sols, Modulation of muscle phosphofructokinase at physiological concentration of enzyme, J. Biol. Chem. 260:2100 (1985).PubMedGoogle Scholar
  14. 14.
    S. C. Hand and J. F. Carpenter, pH-induced metabolic transitions in Artemia embryos mediated by a novel hysteretic trehalase, Science 232:1535 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    J. M. Thevelein, J. A. den Hollander and R. G. Shulman, Trehalase and the control of dormancy and induction of germination in fungal spores, Trends Biochem. Sci. 11:495 (1984).CrossRefGoogle Scholar
  16. 16.
    A. H. Warner and F. J. Finamore, Nucleotide metabolism during the brine shrimp embryogenesis, J. Biol. Chem. 242:1933 (1967).PubMedGoogle Scholar
  17. 17.
    J. S. Clegg, The origin of trehalose and its significance during the formation of encysted dormant embryos of Artemia salina, Comp. Biochem. Physiol. 14:135 (1965).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Marco, R. Garesse and C. G. Vallejo, Storage of mitochondria in the yolk platelets of Artemia dormant gastrulae, Cell. Mol. Biol. 27:515 (1981).Google Scholar
  19. 19.
    A. H. Warner, J. G. Puodziukas and F. J. Finamore, Yolk platelets in brine shrimp embryos. Site of biosynthesis and storage of the diguanosine nucleotides, Exp. Cell. Res. 70:365 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Perona, B. Ezquieta and C. G. Vallejo, The degradation of yolk in Artemia, in “Artemia Research and Applications”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  21. 21.
    R. Perona, J. C. Bes and C. G. Vallejo, The degradation of yolk in the brine shrimp Artemia. Biochemical and morphological studies on the involvement of the lysosomal system, Biol. Cell. 63:361 (1988).PubMedGoogle Scholar
  22. 22.
    A. P. Boulton and A. K. Huggins, Biochemical changes occurring during morphogenesis of the brine shrimp Artemia salina and the effect of alterations in salinity, Comp. Biochem. Physiol. 57A:17 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Carmen G. Vallejo
    • 1
  1. 1.Instituto de Investigaciones Biomedicas CSIC. Facultad de MedicinaUAMMadridSpain

Personalised recommendations