Advertisement

Enzyme Markers in Development: Cholinesterase (ChE), Acid Hydrolases, Alkaline Phosphatase (ALP) and Aminopeptidase (AP) in Embryos and Larvae of Artemia

  • Margherita Raineri
Part of the NATO ASI Series book series (NSSA, volume 174)

Abstract

Artemia is a convenient invertebrate model for developmental investigations owing to its easy breeding in laboratory conditions. These studies are carried on by different approaches, including the study of enzyme activities, which give promising results from many points of view. At present, most information on the developmental enzymology of Artemia consists of biochemical data [1–6], although some morphohistochemical findings concerning yolk degradation are available [7].

Keywords

Small Arrow Large Arrow Excretory Duct Midgut Epithelium Antennal Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Clegg and F. P. Conte, A review of the cellular and developmental biology of Artemia, in: “The Brine Shrimp Artemia”, Vol. 2, G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wetteren (1980).Google Scholar
  2. 2.
    M. G. Cacace, M. Bergami and A. Sada, Developmental regulation of Artemia glycogen Phosphorylase, in: “Artemia Research and its Application”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos eds., Universa Press, Wetteren (1987).Google Scholar
  3. 3.
    B. Funke and K-D. Spindler, Developmental changes of chitinolytic enzymes and ecdysteroid levels during the early development of the brine shrimp Artemia, in: “Artemia Research and its Application”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  4. 4.
    P. Llorente and A. Ruíz-Cárdaba, Carbamyl phosphate synthetase activities during Artemia development, in: “Artemia Research and its Application”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  5. 5.
    A. H. Warner, The role of proteases and their control in Artemia development, in: “Artemia Research and its Application”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  6. 6.
    B. Ezquieta and C. G. Vallejo, Artemia tripsin-like Proteinase: a developmentally regulated Proteinase, in: “Artemia Research and its Application”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  7. 7.
    R. B. Perona, B. Ezquieta and C. G. Vallejo, The degradation of yolk in Artemia, in: “Artemia Research and its Application”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  8. 8.
    M. Raineri and C. Falugi, Acetylcholinesterase activity in embryonic and larval development of Artemia salina Leach (Crustacea Phyllopoda), J. Exp. Zool. 227:229 (1983).CrossRefGoogle Scholar
  9. 9.
    E. Neumann and D. Nachmansohn, Nerve excitability. Towards an integrating concept, in: “Biomembranes”, Vol. 7, L. A. Manson, ed., Plenum Press, New York (1975).Google Scholar
  10. 10.
    A. Minganti and C. Falugi, An epithelial localization of acetylcholinesterase in the ascidian Ciona intestinalis embryos and larvae, Acta Embryol. Exper. n.s., 1:143 (1980).Google Scholar
  11. 11.
    A. Minganti, C. Falugi, M. Raineri and M. Pestarino, Acetylcholinesterase in the embryonic development: an invitation to a hypothesis, Acta Embryol. Exper. n.s., 2:30 (1981).Google Scholar
  12. 12.
    U. Drews, Cholinesterase in embryonic development, “Progress in Histochemistry and Cytochemistry”, Vol. 7, Gustav Fisher Verlag, Stuttgart (1975).Google Scholar
  13. 13.
    C. Falugi and M. Raineri, Acetylcholinesterase (AChE) and pseudocholinesterase (BuChE) activity distribution pattern in early developing chick limbs, J. Embryol. Exp. Morphol. 86:89 (1985).PubMedGoogle Scholar
  14. 14.
    E. Maynard, Esterases in crustacean nervous system. I. Electrophoretic studies in lobsters, J. Exp. Zool. 157:251 (1964).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Maynard, Microscopical localization of cholinesterases in the nervous system of the lobsters, Panulicus argus and Homarus americanus, Tiss. Cell 3:215 (1971).CrossRefGoogle Scholar
  16. 16.
    C. M. Bate and E. B. Grunewald, Embryogenesis of an insect nervous system. II. A second class of neuron precursor cells and the origin of the intersegmental connectives, J. Embryol. Exp. Morphol. 61:317 (1981).PubMedGoogle Scholar
  17. 17.
    C. E. Blanchard, Pioneer neurons and the early development of the nervous system in Artemia, in: “Artemia Research and its Application”, Vol. 1, P. Sorgeloos, D. A. Bengtson, W. Decleir and E. Jaspers, eds., Universa Press, Wetteren (1987).Google Scholar
  18. 18.
    H. Keshishian, The origin and morphogenesis of pioneer neurons in the grasshopper metathoracic leg, Dev. Biol. 80:388 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    P. M. Whitington and E. Scifert, Axon growth from limb motoneurons in the locust embryo: the effect of target limb removal on the path taken out of the central nervous system, Dev. Biol. 93:206 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    D. McMahon, Chemical messengers in development: a hypothesis, Science 185:1012 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    G. A. Buznikov, I. V. Chudakova, L. V. Berdysheva and N. M. Vyazmina, The role of neurohumors in early embryogenesis. II. Acetylcholine and catecholamine content in developing embryos of sea urchin, J. Embryol. Exp. Morphol. 20:119 (1968).PubMedGoogle Scholar
  22. 22.
    G. A. Buznikov, Biogenic monoamines and acetylcholine in Protozoa and metazoan embryos, in: “Neurotransmitters: Comparative Aspects”, J. Salanki and T. M. Turpaev, eds., Akadémiai Kiadó, Budapest (1980).Google Scholar
  23. 23.
    G. A. Buznikov and Y. B. Shmukler, Possible role of “prenervous” neurotransmitters in cellular interactions of early morphogenesis: a hypothesis, Neurochem. Res. 6:55 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Raineri and P. Modenesi, The cholinergic system: a hypothesis of its general role in living cells, in: “Cellular and Molecular Control of Direct Cell Interactions in Developing Systems”, (Abstracts), ASI-NATO, Banyuls-sur-Mer (1984).Google Scholar
  25. 25.
    H. Schmidt, Muscarinic acetylcholine receptor in chick limb bud during morphogenesis, Histochemistry 71:89 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Schmidt, G. Oettling, T. Kaufenstein, G. Hartung and U. Drews, Intracellular calcium mobilization on Stimulation of the muscarinic cholinergic receptor in chick limb bud cells, Roux’s Arch. Dev. Biol. 194:44 (1984).Google Scholar
  27. 27.
    T. Kubo, K. Fukuda, A. Mikami, A. Maeda, H. Takahashi, M. Mishina, K. Haga, A. Ichiyama, K. Kangawa, M. Kojima, H. Matsuo, T. Hirose and S. Numa, Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor, Nature 323:411 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    E. G. Peralta, J. W. Winslow, G. L. Peterson, D. N. Smith, A. Ashkenazi, J. Ramachandran, M. I. Schimerlik and D. J. Capon, Primary structure and biochemical properties of an M muscarinic receptor, Science 236:600 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    K, Fukuda, T. Kubo, I. Akiba, A. Maeda, M. Mishina and S. Numa, Molecular distinction between muscarinic acetylcholine receptor subtypes, Nature 327:623 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Ashkenazi, J. W. Winslow, E. G. Peralta, G. L. Peterson, M. I. Schimerlik, D. J. Capon and J. Ramachandran, An M2 muscarinic receptor subtype coupled to both adenyl cyclase and phosphoinisitide turnover, Science 238:672 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Oettling, H. Schmidt and U. Drews, The muscarinic receptor of chick embryo cells: correlation between ligand binding and calcium mobilization, J. Cell Biol. 100:1073 (1985).PubMedCrossRefGoogle Scholar
  32. 32.
    A. J. Trewavas, R. Sexton and P. Kelly, Polarity, calcium and abscission: molecular bases for developmental plasticity in plants, J. Embryol. Exp. Morphol. 83 (Suppl.):179 (1984).PubMedGoogle Scholar
  33. 33.
    M. J. Berridge and R. F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    G. A. Buznikov, Acetylcholine and biogenic monoamines as intracellular regulators of early embryogenesis, Sov. Sci. Rev. F. Physiol. Gen. Biol. 1:137 (1987).Google Scholar
  35. 35.
    P. Vanittanakom and U. Drews, Ultrastructural localization of Cholinesterase during chondrogenesis and myogenesis in the chick limb bud, Anat. Embryol. 172:183 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    K.-U. Thiedemann, P. Vanittanakom, F.-M. Schweers and U. Drews, Embryonic cholinesterase activity during morphogenesis of the mouse genital tract. Light-and electron-microscopic observations, Cell Tiss. Res. 244:153 (1986).Google Scholar
  37. 37.
    D. M. Gardiner and R. D. Grey, Membrane junetions in Xenopus eggs: their distribution suggests a role in calcium regulation, J. Cell Biol. 96:1159 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Cartaud, J. Boyer and R. Ozon, Calcium sequestring activities of reticulum vesicles from Xenopus laevis oocytes, Exp. Cell Res. 155:565 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Forer and P. J. Sillers, The role of the phosphatidylinositol cycle in mitosis in sea urchin zygotes. Lithium inhibition is overcome by myo-inositol but not by other cyclitols or sugars, Exp. Cell Res. 170:42 (1987).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Whitaker, Inositol 1,4,5-trisphosphate microinjection activities sea urchin eggs, Nature 312:636 (1984).CrossRefGoogle Scholar
  41. 41.
    W. B. Busa, J. E. Ferguson, S. K. Joseph, J. R. Williamson and R. Nuccitelli, Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular Stores, J. Cell Biol. 101:677 (1985).PubMedCrossRefGoogle Scholar
  42. 42.
    P. R. Turner, L. A. Jaffe and A. Fein, Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein, J. Cell Biol. 102:70 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    L. Cariello, G. Romano and L. Nelson, Acetylcholinesterase in sea urchin spermatozoa, Gamete Res. 14:323 (1986).CrossRefGoogle Scholar
  44. 44.
    B. Sakmann, C. Methfessel, M. Mishina, T. Takahashi, T. Takai, M. Kurasaki, K. Fukuda and S. Numa, Role of acetylcholine receptor subunits in gating of the channel, Nature 318:538 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    B. Dale and L. Santella, Sperm-oocyte interaction in the sea-urchin, J. Cell Sci. 74:153 (1985).PubMedGoogle Scholar
  46. 46.
    B. Picherai and M. Charbonneau, Anuran fertilization: a morphological reinvestigation of some early events, Ultrastr. Res. 81:306 (1982).CrossRefGoogle Scholar
  47. 47.
    A. Eisen, D. P. Kiehart, S. J. Wieland and G. T. Reynolds, Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs, J. Cell Biol. 99:1647 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    P. R. Turner, M. P. Sheetz and L. A. Jaffe, Fertilization increases the polyphosphoinositide content of sea urchin eggs, Nature 310:414 (1984).PubMedCrossRefGoogle Scholar
  49. 49.
    G. Schatten, Motility during fertilization, Int. Rev. Cytol. 79:60 (1982).Google Scholar
  50. 50.
    R. A. Fluck, Localization of acetylcholinesterase activity in young embryos of the medaka Oryzias latipes, a teleost, Comp. Biochem. Physiol. 72C:59 (1982).Google Scholar
  51. 51.
    T. Laasberg, A. Pedak and T. Neuman, The muscarinic reeeptor-mediated action of acetylcholine in the gastrulating chick embryo, Comp. Biochem. Physiol. 86C:313 (1987).Google Scholar
  52. 52.
    A. Miki and H. Mizoguti, Acetylcholinesterase activity in the myotome of the early chick embryo, Cell Tiss. Res. 227:23 (1982).Google Scholar
  53. 53.
    C. Falugi, E. Balza and L. Zardi, Localization of acetylcholinesterase in normal human fibroblasts and a human fibrosarcoma cell line, Bas. Appl. Histochem. 27:205 (1983).Google Scholar
  54. 54.
    Y. H. Nakanishi, T. Iwasaki, T. Okigaki and H. Kato, Cytological studies of Artemia salina. I. Embryonic development without cell multiplication after the blastula stage in encysted dry eggs, Annot. Zool. Jpn. 35:223 (1962).Google Scholar
  55. 55.
    M. Raineri, Histochemical and biochemical study of alkaline Phosphatase (ALP) activity in developing embryos and larvae of Artemia, in: “Artemia Research and its Application”, Vol. 2, W. Decleir, L. Moens, H. Siegers, E. Jaspers and P. Sorgeloos, eds., Universa Press, Wetteren (1987).Google Scholar
  56. 56.
    R. T. Swank and K. Paigen, Biochemical and genetic evidence for a macromolecular β-glucuronidase complex in microsomal membranes, J. Mol. Biol. 77:371 (1973).PubMedCrossRefGoogle Scholar
  57. 57.
    C. Falugi and M. Raineri, Fosfatasi nello sviluppo dei Crostacei, Boll. Zool. 45:210 (1978).Google Scholar
  58. 58.
    F. P. Conte, Structure and function of the crustacean larval salt gland, Int. Rev. Cytol. 91:45 (1984).CrossRefGoogle Scholar
  59. 59.
    A. Schrehardt, Ultrastructural investigations of the filter-feeding apparatus and the alimentary canal of Artemia, in: “Artemia Research and its Application”, Vol. 1, P. Sorgeloos, D. A. Bengtson, W. Decleir and E. Jaspers, eds., Universa Press, Wetteren (1987).Google Scholar
  60. 60.
    R. J. Lowy and F. P. Conte, Isolation and functional characterization of crustacean larval salt gland, Am J. Physiol. 248:R702 (1985).PubMedGoogle Scholar
  61. 61.
    C. Falugi, Histochemical investigations on aminopeptidases in Artemia salina (Phyllopoda) embryos and larvae, Acta Embryol. Exper. 2:171 (1978).Google Scholar
  62. 62.
    C. Falugi, M. Raineri and E. Vanara, Aminopeptidasi nello sviluppo di Artemia salina Leach, in: “Ricerca Scientifica ed Educazione Permanente,” Suppl. n.6, Atti del XLVII Convegno dell’Unione Zoologica Italiana, ed. Universita degli Studi di Milano (1979).Google Scholar
  63. 63.
    M. M. Nachlas, B. Monis, D. Rosenblatt and A. M. Seligman, Improvement in the histochemical localization of leucine aminopeptidase with a new Substrate, L-leucyl-4-methoxy-β-naphthylamide, J. Biophys. Biochem. Cytol. 7:261 (1960).PubMedCrossRefGoogle Scholar
  64. 64.
    S. R. Hootman and F. P. Conte, Fine structure and function of the alimentary epithelium in Artemia salina nauplii, Cell Tiss. Res. 155:423 (1974).Google Scholar
  65. 65.
    G. E. Tyson, The fine structure of the maxillary gland of the brine shrimp, Artemia salina: the end sac, Z. Zellforsch. 86:129 (1968).PubMedCrossRefGoogle Scholar
  66. 66.
    G. E. Tyson, The fine structure of the maxillary gland of the brine shrimp, Artemia salina: the efferent duct, Z. Zellforsch. 93:151 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Margherita Raineri
    • 1
  1. 1.Institute of Comparative AnatomyUniversity of GenovaGenovaItaly

Personalised recommendations