Calorimetry of Fuming Nitric Acid Treated Polyethylene

  • G. Meinel
  • A. Peterlin
  • K. Sakaoku


Polyethylene drawn at different temperatures to a draw ratio between 7 and 25 and polyethylene rolled at room temperature to a draw ratio about 3 was treated with fuming nitric acid. From the two characteristic maxima of the thermograms, crystallite length and the number of unoxidized tie molecules are calculated. In the drawn sample the crystallite length is about 50A smaller than the long period found by small angle X-rays. This is a consequence of the non-crystalline layer between the lamellae which is first eaten away by the acid. The number of tie molecules is practically constant in samples drawn between 14 and 110°C, but increases nearly linearly with draw ratio λ up to λ = 20 and stays constant at higher draw ratios. The so obtained numbers are compared to the minimum number of tie molecules needed for the explanation of the elastic modulus and the ultimate tensile strength of the same samples before oxidation.


Elastic Modulus Ultimate Tensile Strength Melting Peak Draw Ratio Rolled Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Palmer and A. J. Cobbold, Macromol. Chem. 74, 174 (1964).CrossRefGoogle Scholar
  2. 2.
    A. Keller and S. Sawada, Macromol. Chem. 74, 190 (1964).CrossRefGoogle Scholar
  3. 3.
    A. Peterlin and G. Meinel, J. Polymer Sci., B3, 1059 (1965).CrossRefGoogle Scholar
  4. A. Peterlin, G. Meinel and H. G. Olf, J. Polymer Sci., B4, 399 (1966).CrossRefGoogle Scholar
  5. 4.
    F. H. Winslow, M. Y. Hellmann, W. Matreyek and R. Salovey, J. Polymer Sci., B5, 89 (1967).CrossRefGoogle Scholar
  6. 5.
    K. H. Illers and H. Hendus, Koll.-Z., 218, 56 (1967).CrossRefGoogle Scholar
  7. 6.
    G. Meinel and A. Peterlin, J. Polymer Sci., B5, 197 (1967). J. Polymer Sci., A-2 (in press).CrossRefGoogle Scholar
  8. 7.
    Unpublished data.Google Scholar
  9. 8.
    R. Corneliussen and A. Peterlin, Makromol. Chem. 105, 193 (1967).CrossRefGoogle Scholar
  10. 9.
    P. R. Swan, J. Polymer Sci., 42, 525 (1960).CrossRefGoogle Scholar
  11. 10.
    R. Corneliussen, private communication.Google Scholar
  12. 11.
    M. Takayanagi, Menu. Fac. Eng. Kyushu University 23, 8 (1963).Google Scholar
  13. 12.
    G. Meinel and A. Peterlin, J. Polymer Sci., B5, 613 (1967).CrossRefGoogle Scholar
  14. 13.
    I. Sakurada, Y. Nukushina and T. Ito, J. Polymer Sci., 57, 651 (1962).CrossRefGoogle Scholar
  15. 14.
    L. R. G. Treloar, Polymer 1, 95 (1960).CrossRefGoogle Scholar
  16. 15.
    T. Shimanouchi, M. Asahina and S. Enomoto, J. Polymer Sci., 59, 93 (1962).CrossRefGoogle Scholar
  17. 16.
    H. Mark, Cellulose and Cellulose Derivatives (ed. E. Ott), Interscience, New York; 1943.Google Scholar
  18. 17.
    S._N. Zhurkov and E. E. Tomashevsky, Physical Basis of Yield and Fracture, Edited by A. C. Stickland, Oxford, Sept. 1966, Institute of Physics and Phys. Soc. Conference Series No. 1, p. 200.Google Scholar
  19. 18.
    D. Campbell and A. Peterlin, J. Polymer Sci., B (in press).Google Scholar
  20. 19.
    A. Peterlin and K. Sakaoku, J. Appl. Phys. 38, 4152 (1967), Kolloid-Z. 212, 51 (1966)CrossRefGoogle Scholar
  21. K. Sakaoku and A. Peterlin, J. Macromol. Sci. (Phys.) B1, 103 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • G. Meinel
    • 1
  • A. Peterlin
    • 1
  • K. Sakaoku
    • 1
  1. 1.Camille Dreyfus LaboratoryResearch Triangle InstituteResearch Triangle ParkUSA

Personalised recommendations