Measurement of the Kinetics of Dissociation of Dicyclopentadiene Derivatives with the Differential Scanning Calorimeter

  • W. E. Franklin
  • C. H. Mack
  • S. P. Rowland


In the course of studies of potential thermally reversible crosslinking agents for cotton cellulose, it became necessary to develop a method of measuring the kinetic parameters for the dissociation of dimers of methyl cyclopentadienecarboxylate. It has previously been reported that tetracyanoethylene and N-phenylmaleimide are suitable trapping agents for the products of these dissociations (1). A method capable of measuring the kinetics of such reactions, both in solution and in the cellulose fiber matrix, was required. The use of the differential scanning calorimeter for measuring the kinetics of these reactions in solution is discussed here.


Differential Scanning Calorimeter Arrhenius Parameter Cotton Cellulose Trapping Agent Reaction Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. (1).
    W. E. Franklin, S. P. Rowland, and C. H. Mack, J. Org. Chenu, in press.Google Scholar
  2. (2).
    W. W. Wendlandt, “Thermal Methods of Analysis,” John Wiley & Sons, Inc., New York, 1964, p. 174.Google Scholar
  3. (3).
    R. L. Reed, L. Weber, and B. S. Gottfried, Ind. Eng. Chenu, Fundamentals, 4, 38 (1965).CrossRefGoogle Scholar
  4. (4).
    E. S. Watson, M. J. O’Neill, J. Justin, and N. Brenner, Anal. Chem., 36, 1233 (1964).CrossRefGoogle Scholar
  5. (5).
    C. H. Mack and S. R. Hobart, Applied Polymer Symposia, 2, 133 (1966).Google Scholar
  6. (6).
    R. N. Rogers and E. D. Morris, Anal. Chem., 38, 412 (1966).CrossRefGoogle Scholar
  7. (7).
    M. J. Uricheck, Instrument News (Perkin-Elmer Corp.), Vol. 17, No. 2 (1966).Google Scholar
  8. (8).
    C. H. Mack and D. J. Donaldson, Textile Res. J., in press.Google Scholar
  9. (9).
    S. M. Ellerstein, J. Phys. Chem., 69, 2471 (1965).CrossRefGoogle Scholar
  10. (10).
    S. M. Ellerstein, Applied Polymer Symposia, 2, 111 (1966).Google Scholar
  11. (11).
    K. Alder, F. H. Flock, A. Hausweiler, and R. Reeber, Ber., 87, 1752 (1954).CrossRefGoogle Scholar
  12. (12).
    J. Sauer, H. Wiest, and A. Mielert, Ber., 97, 3183 (1964).CrossRefGoogle Scholar
  13. (13).
    B. S. Khambata and A. Wasserman, J. Chem. Soc., 375 (1939).Google Scholar
  14. (14).
    W. C. Herndon, C. R. Grayson, and J. M. Manion, J. Org. Chem., 32, 526 (1967).CrossRefGoogle Scholar
  15. (15).
    R. C. Peterson, J. H. Markgraff, and S. D. Ross, J. Am. Chem. Soc., 83, 3819 (1961).CrossRefGoogle Scholar
  16. (16).
    R. M. Fuoss, I. O. Salyer, and H. S. Wilson, J. Polymer Sci., Part A, 2, 3147 (1964).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • W. E. Franklin
    • 1
  • C. H. Mack
    • 1
  • S. P. Rowland
    • 1
  1. 1.Southern Regional Research LaboratoryNew OrleansUSA

Personalised recommendations