The Temperature Dependence of the Grüneisen Ratio of Polymeric Materials Determined by Thermal and Ultrasonic Sound Velocity Measurements

  • S. R. Urzendowski
  • A. H. Guenther
  • J. R. Asay


The Grüneisen ratio, γG, often appears as a temperature independent factor in the thermal term of the Mie-Grüneisen equation of state for metals and refractory materials,(1,2,3,4).


Heat Capacity Bulk Modulus Transitional Region Heat Capacity Data Dynamic Mechanical Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    T. H. K. Barron, Phil, Mag., 46, 720 (1955)Google Scholar
  2. T. H. K. Barron, Ann, Phys. 1, 77 (1957).CrossRefGoogle Scholar
  3. (2).
    B. Dayal, Proc. Indian Acad. Sci., A20, 138 (1944).Google Scholar
  4. (3).
    J. C. Slater, Introduction to Chemical Physics, New York, N. Y., 1939.Google Scholar
  5. (4).
    M. Bom, Phys, Z., 13, 297 (1912); M. Born and T. Von Karman, 13, 297.Google Scholar
  6. (5).
    E. Grüneisen, Handbuch der Physik, Vol. 10, p 22, Springer, Berlin (1926)Google Scholar
  7. (6).
    E. Grüneisen, Ann. Physik, 39, 258 (1912).Google Scholar
  8. (7).
    T. Rice, R. McQueen and J. M. Walsh, in “Solid State Physics” F. Seitz and D. Turnbull, Ed., Academic Press, Inc., New York, N.Y., 1958, Vol. 6.Google Scholar
  9. (8).
    R. O. Davies, Phil. Mag., 45, 290 (1954).Google Scholar
  10. (9).
    D. Bijl and H. Pullan, Phil. Mag., 45, 290 (1954)Google Scholar
  11. D. Bijl and H. Pullan, Physica, 21, 285 (1955).CrossRefGoogle Scholar
  12. (10).
    M. Blackman, Proc. Roy. Soc., A148, 365 (1934)Google Scholar
  13. M. Blackman, Phil. Mag., 3, 831 (1958)CrossRefGoogle Scholar
  14. M. Blackman, Proc. Phys. Soc., 74, 17 (1959).CrossRefGoogle Scholar
  15. (11).
    A. Schauer, Can. J. Phys., 42, 1957 (1964).CrossRefGoogle Scholar
  16. (12).
    E. I. duPont deNemours, Differential Thermal Analysis Instrument Manual, Wilmington, Del., 1905.Google Scholar
  17. (13).
    J. R. Asay, S. R. Urzendowski, and A. H. Guenther, AFWL-TR-67-91, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, 1967.Google Scholar
  18. (14).
    S. R. Urzendowski, J. R. Asay, and A. H. Guenther, submitted for publication in J. Appl. Phys. Google Scholar
  19. (15).
    S. R. Urzendowski, J. R. Asay, and A. H. Guenther, submitted for publication in J. Appl. Phys. Google Scholar
  20. (16).
    H. J. McSkimin, J. Acoust. Soc. Am., 22, 413 (1950).CrossRefGoogle Scholar
  21. (17).
    J. R. Asay, A. J. Dorr, N. D. Arnold and A. H. Guenther, AFWL-TR-65-188, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, 1966.Google Scholar
  22. (18).
    N. D. Arnold, J. Appl. Poly. Sci., 10, 731 (1966).CrossRefGoogle Scholar
  23. (19).
    L. E. Nielsen, Mechanical Properties of Polymers, Reinhold Pub. Co., New York, N. Y., 1962, p. 33.Google Scholar
  24. (20).
    D. D. Coffman, G. J. Berchet, W. R. Petersen and P. W. Spanagel, J. Poly. Sci., 2, 139 (1957).Google Scholar
  25. (21).
    M. Dole and E. Wunderlich, J. Poly. Sci., 24, 139 (1957).CrossRefGoogle Scholar
  26. (22).
    R. A. Quinn, Jr., D. E. Roberts and R. N. Work, J. Appl. Phys., 22, 1085 (1951).CrossRefGoogle Scholar
  27. (23).
    G. T. Furukawa, R. E. McCoskey and G. J. King, J. Res. Nat. Bur. Stand., 49, 273 (1952).Google Scholar
  28. (24).
    H. A. Rigby and C. W. Bunn, Nature, 164, 583 (1949).CrossRefGoogle Scholar
  29. (25).
    C. W. Bunn and E. R. Howells, Nature, 174, 549 (1954).CrossRefGoogle Scholar
  30. (26).
    P. Marx and M. Dole, J. Am. Chem. Soc., 77, 4771 (1955).CrossRefGoogle Scholar
  31. (27).
    W. J. Roff, Fibers, Plastics and Rubbers, Butterworth, Inc., London, England, 1956.Google Scholar
  32. (28).
    H. W. Starkweather and R. H. Boyd, J. Phys. Chem., 64, 410 (1960).CrossRefGoogle Scholar
  33. (29).
    J. C. Siegel, L. T. Muus, T. P. Lin, and H. A. Larsen, J. Poly. Sci., 2A, 391 (1964).Google Scholar
  34. (50).
    L. E. Nielsen, Soc. Plastics Eng, J., 16, 525 (1960).Google Scholar
  35. (31).
    G. W. Becker, Kolloid Z., 140, 1 (1955).CrossRefGoogle Scholar
  36. (32).
    K. Schmieder and K. Wolf, Kolloid Z., 134, 149 (1953).CrossRefGoogle Scholar
  37. (33).
    P. Heydeinann and H. D. Grucking, Kolloid Zeit., 1, 16 (1963).Google Scholar
  38. (34).
    K. Deutsch, E. A. W. Hoff and W. Reddish, J. Poly. Sci., 13, 565 (1954).CrossRefGoogle Scholar
  39. (35).
    J. Koppelmann, Kolloid Z., 164, 31 (1959).CrossRefGoogle Scholar
  40. (36).
    R. B. Fox, L. G. Isaacs and S. Stokes, J. Poly. Sci. Part A, 1, 1079 (1963).Google Scholar
  41. (37).
    P. R. E. Cowley and H. W. Melville, Proc. Roy. Soc., London, A 210, 153 (1955).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • S. R. Urzendowski
    • 1
  • A. H. Guenther
    • 1
  • J. R. Asay
    • 1
  1. 1.Air Force Weapons LaboratoryKirtland Air Force BaseAlbuquerqueUSA

Personalised recommendations