Advertisement

Calorimetric Studies of the Fusion of Linear Polyethylene

  • J. F. Jackson
  • L. Mandelkern

Abstract

Recent advances in instrumentation, as exemplified by the Perkin-Elmer Differential Scanning Calorimeter,(1)(2) have enabled calorimetric studies to be made on molecular weight fractions of crystalline polymers since only small amounts of sample are required. Recently, the extremely important influence of molecular weight in governing all aspects of the crystallization behavior of polymers and in allowing for a critical interpretation of morphology, including the interfacial structure, has been pointed out.(3)(4)(5) As a prelude to discussing the fusion properties of linear polyethylene, as observed calorimetrically, and their dependence on molecular weight, morphology, and mode of crystallization it is appropriate to examine certain of the operational aspects of the instrument. This involves the absolute calibration of the instrument itself and an assessment of the effect of polymer mass, heating rate and scale factor on the measured enthalpy of fusion with particular concern for the base line delineation and the detection of the onset of melting. For the calibration, the enthalpy of fusion of indium is taken as 6. 8 cal. /g. Detailed studies have shown that the area under the fusion curve is in direct proportion to the indium mass and, for the DSC-1B, is inversely proportional to the degree of attenuation. Gray(6) has shown that using the above value of ΔH* for indium, the corresponding values obtained for tin, lead, zinc, and a variety of organic compounds agree almost exactly with the values quoted in the literature as obtained by conventional calorimetry. This is also quantitatively shown by the work of Yoncoskie(7) in the present symposium.

Keywords

Crystallization Temperature Multiple Peak Calorimetric Study Pure Fraction High Molecular Weight Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E.S. Watson, M.J. O’Neill, J. Justin and N. Brenner, Anal. Chem. 36, 1233 (1964).CrossRefGoogle Scholar
  2. (2).
    A. P. Gray and K. Casey, J. Polymer Sci. B2, 381 (1964).CrossRefGoogle Scholar
  3. (3).
    L. Mandelkern, J. M. Price, M. Gopalan, and J.G. Fatou, J. Polymer Sci. A2, 4, 385 (1966).CrossRefGoogle Scholar
  4. (4).
    L. Mandelkern, J. Polymer Sci. 15C, 129 (1966).Google Scholar
  5. (5).
    L. Mandelkern, Poly Sei and Engineering J. 7, 232 (1967).CrossRefGoogle Scholar
  6. (6).
    A. P. Gray, private communication.Google Scholar
  7. (7).
    R.A. Yoncoskie, Polymer Preprints 9, 923 April 1968 (No. 1).Google Scholar
  8. (8).
    L. Mandelkern, Crystallization of Polymers, McGraw-Hill Book Co., New York, 1964.Google Scholar
  9. (9).
    L. Mandelkern and A. L. Allou, Jr., J. Polymer Sci. B4, 447 (1966).CrossRefGoogle Scholar
  10. (10).
    E.W. Fischer and G.F. Schmidt, Angew. Chem. 1, 488 (1962).CrossRefGoogle Scholar
  11. (11).
    F. Hamada, B. Wunderlich, T. Sumeda, S. Hayashi and A. Nakajima, J. Phys. Chem. 72, 178 (1968).CrossRefGoogle Scholar
  12. (12).
    L. Mandelkern, J.G. Fatou, R. Denison and J. Justin, J. Polymer Sci. B3, 803 (1965).CrossRefGoogle Scholar
  13. (13).
    L. Mandelkern, A. L. Allou, Jr. and M. Gopalan, J. Phys. Chem. 72, 309 (1968).CrossRefGoogle Scholar
  14. (14).
    H. Hendus and K.H. Illers, Kunstoffe 57, 193 (1967).Google Scholar
  15. (15).
    T. Okada and L. Mandelkern, J. Polymer Sei. A2, 5, 239 (1967).CrossRefGoogle Scholar
  16. (16).
    M. R. Gopalan and L. Mandelkern, J. Polymer Sci. B5, 925 (1967).CrossRefGoogle Scholar
  17. (17).
    J.G. Fatou and L. Mandelkern, J. Phys. Chem. 69, 417 (1965).CrossRefGoogle Scholar
  18. (18).
    F. A. Quinn, Jr. and L. Mandelkern, J. Am. Chem. Soc. 80, 3178 (1958); 81, 6533 (1959).CrossRefGoogle Scholar
  19. (19).
    J.D. Hoffman, Soc. Plastic Eng. 4, 315 (1964).Google Scholar
  20. (20).
    J.B. Jackson, P. J. Flory and R. Chiang, Trans. Fara. Soc. 59, 1906 (1963).CrossRefGoogle Scholar
  21. (21).
    J.F. Jackson and L. Mandelkern, in preparation.Google Scholar
  22. (22).
    H.E. Bair, T.W. Huseby and R. Salovey, Polymer Preprints 9 795 (1968), (No. 1).Google Scholar
  23. (23).
    L. Mandelkern and A. L. Allou, Jr., unpublished results.Google Scholar
  24. (24).
    F.R. Anderson, J. Appl. Phys. 35, 64 (1964).CrossRefGoogle Scholar
  25. (25).
    P.H. Geil, F.R. Anderson, B. Wunderlich and T. Arakawa, J. Polymer Sci. A2, 3707 (1964).Google Scholar
  26. (26).
    J.L. Kardos, E. Baer, P.H. Geil and J. L. Koenig, Kolloid-Z 204, 1 (1965).CrossRefGoogle Scholar
  27. (27).
    M. Gopalan and L. Mandelkern, J. Phys. Chem. 71, 3833 (1967).CrossRefGoogle Scholar
  28. (28).
    K. Ohno, Master of Science Thesis, Florida State University, 1968.Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • J. F. Jackson
    • 1
  • L. Mandelkern
    • 1
  1. 1.Department of Chemistry and Institute of Molecular BiophysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations