Electroweak Symmetry Breaking Studies at the pp Colliders of the 1990’s and Beyond

  • Michael S. Chanowitz
Part of the Ettore Majorana International Science Series book series (EMISS, volume 44)


Within the conventional framework of a spontaneously broken gauge theory, general principles establish that the electroweak symmetry is broken by a new force that may be weak with associated new quanta below 1 TeV or strong with quanta above 1 TeV. The SSC parameters, \( \sqrt s= 40 \) TeV and = 1033 cm-2 s-1, define a minimal facility with assured capability to observe the signals of symmetry breaking by a strong force above 1 TeV. Foreseeable luminosity upgrades would not be able to compensate a much lower collider energy for these physics signals. If the strong WW scattering signal were seen at the SSC in the 1990’s it would provide a clear imperative for a collider with the physics reach of the ELOISATRON to begin detailed studies of the new force and quanta early in the next century.


Higgs Boson Symmetry Breaking Goldstone Boson Equivalence Theorem Unitary Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. Glashow, Nucl. Phys. 22, 579 (1961)CrossRefGoogle Scholar
  2. 1a.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)CrossRefGoogle Scholar
  3. 1b.
    A. Salam, in Proc. 8th Nobel Symp., ed. N. Svartholm (Almqvist and Wiksells, Stockholm, 1968) p. 367.Google Scholar
  4. 2.
    M.S. Chanowitz and M.K. Gaillard, Nucl. Phys. B261, 379 (1985).CrossRefGoogle Scholar
  5. 3.
    M.S. Chanowitz, M. Golden, H. Georgi, Phys. Rev. Lett. 57, 2344 (1986)PubMedCrossRefGoogle Scholar
  6. 3a.
    M.S. Chanowitz, M. Golden, H. Georgi, Phys. Rev. D36, 1490 (1987).Google Scholar
  7. 4.
    S. Weinberg, Phys. Rev. D13, 974 (1976)Google Scholar
  8. 4a.
    S. Weinberg, Phys. Rev. D20, 1277 (1979)Google Scholar
  9. 4b.
    L. Susskind, Phys. Rev. D20, 2619 (1979).Google Scholar
  10. 5.
    R.N. Cahn and S. Dawson, Phys. Lett. 136B, 196 (1984)Google Scholar
  11. 5a.
    R.N. Cahn and S. Dawson, Phys. Lett. 138B, 464 (1984).Google Scholar
  12. 6.
    M.S. Chanowitz and M. K. Gaillard, Phys. Lett. 142B, 85 (1984)Google Scholar
  13. 6a.
    S. Dawson, Nucl. Phys. B29, 42 (1985)CrossRefGoogle Scholar
  14. 6b.
    G. Kane, W. Repko, W. Rolnick, Phys. Lett. 148B, 367 (1984).Google Scholar
  15. 7.
    The Feasibility of Experiments at High Luminosity at the LHC, ed. J. Mulvey, CERN 88–02 (1988).Google Scholar
  16. 8.
    M. Chanowitz and R. Cahn, Phys. Rev. Lett. 56, 1327 (1986).PubMedCrossRefGoogle Scholar
  17. 9.
    B. Cox and F. Gilman, p. 87, Proc. 1984 Summer Study on Design and Utilization of the SSC, eds. R. Donaldson and J. Morfin, American Physical Society.Google Scholar
  18. 10.
    M. Bento and C. H. Llewellyn Smith, Nucl. Phys. B289, 36 (1987)CrossRefGoogle Scholar
  19. 10a.
    G. Altarelli, B. Mele, F. Pitolli, Nucl. Phys. B287, 205 (1987)CrossRefGoogle Scholar
  20. 10b.
    J. Gunion, A. Tofighi-Niaki, Phys. Rev. D36, 2671 (1987).Google Scholar
  21. 10a.
    M. Chanowitz, Ann. Rev. Nucl. Part. Sci. 38, 323 (1988).CrossRefGoogle Scholar
  22. 11.
    M. Cornwall, D. Levin, G. Tiktopoulos, Phys. Rev. D10, 1145 (1974).Google Scholar
  23. 12.
    G. Gounaris, R. Kogerler, H. Neufeld, Phys. Rev. D34, 3257 (1986).Google Scholar
  24. 13.
    C. Vayonakis, Lett. Nuovo Cim. 17, 383 (1976).CrossRefGoogle Scholar
  25. 14.
    B.W. Lee, C. Quigg, H. Thacker, Phys. Rev. D16, 1519 (1977).Google Scholar
  26. 15.
    M. Chanowitz, M. Furman, I. Hinchliffe, Phys. Rev. Lett. 78B, 285 (1978)Google Scholar
  27. 15a.
    M. Chanowitz, M. Furman, I. Hinchliffe, Nucl. Phys. B153, 402 (1979).CrossRefGoogle Scholar
  28. 16.
    M. Duncan, G. Kane, W. Repko, Nucl. Phys. B272, 571 (1986).Google Scholar
  29. 17.
    D. Dicus, R. Vega, Phys. Rev. Lett. 57, 1110 (1986).PubMedCrossRefGoogle Scholar
  30. 18.
    J. Gunion, J. Kalinowski, A. Tofighi-Niakis, Phys. Rev. Lett. 57, 2351 (1986).PubMedCrossRefGoogle Scholar
  31. 19.
    R.N. Cahn et al., Phys. Rev. D35, 1626 (1987).Google Scholar
  32. 20.
    J. Donoghue, C. Ramirez, G. Valencia, Phys. Rev. D38, 2195 (1988).Google Scholar
  33. 21.
    See. ref. (16).Google Scholar
  34. 22.
    G. Altarelli et al., ref. (10).Google Scholar
  35. 23.
    R. Cahn, Nucl. Phys. B255, 341 (1985).CrossRefGoogle Scholar
  36. 24.
    See ref. (18).Google Scholar
  37. 25.
    H. Georgi et al., Phys. Rev. Lett. 40, 692 (1978).CrossRefGoogle Scholar
  38. 26.
    D. Froidevaux et al., p. 61, Proc. Workshop on Physics at Future Accelerators, ed. J. Mulvey, CERN 87–07 (1987).Google Scholar
  39. 27.
    R. Cahn et al., p. 20, Proc. Workshop on Experiments, Detectors, and Experimental Areas for the SSC, July 7–17, 1987, Berkeley, eds. R. Donaldson and M. Gilchriese (World Scientific, Singapore, 1988).Google Scholar
  40. 28.
    W. Stirling et al., Phys. Lett. 163B, 261 (1985)Google Scholar
  41. 28a.
    J. Gunion et al., Phys. Lett. 163B, 389 (1985).Google Scholar
  42. 29.
    J. Gunion and M. Soldate, Phys. Rev. D34, 826 (1986).Google Scholar
  43. 30.
    A. Savoy-Navarro, p. 68, ref. (27).Google Scholar
  44. 31.
    R. Kleiss, W. Stirling, Phys. Lett. 200B, 193 (1988); W.J. Stirling, these proceedings.Google Scholar
  45. 32.
    G. Herten, p. 103, ref. (27).Google Scholar
  46. 33.
    M. Chanowitz, M. Golden, Phys. Rev. Lett. 61, 1053 (1988). Due to a programming error the gluon exchange background was underestimated in this paper see ref. (34) and Chanowitz and Golden, in preparation.PubMedCrossRefGoogle Scholar
  47. 34.
    D. Dicus and R. Vega, U.C. Davis preprint (1988).Google Scholar
  48. 35.
    E. Eichten et al., Rev. Mod. Phys. 56, 579 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michael S. Chanowitz
    • 1
  1. 1.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations