Photons, Electrons and Muons in Past, Present and Future

  • Ulrich Becker
Part of the Ettore Majorana International Science Series book series (EMISS, volume 44)


The “art of detection” and the strategy of physics will be the focus of this presentation. Firstly, why γ, e, and μ ? Because they are fundamental; directly detectable in unique ways, hence at high energies easy to distinguish from hadrons. The physical background is small and the production rate rare. If we consider:
$$ \left[ \begin{array}{l} Good{\kern 1pt} physics \\ Choice \\ Strategy \\ \end{array} \right]\quad *\quad \left[ \begin{array}{l} Good\;Detection \\ type \\ {\mathop{\rm Re}\nolimits} solution \\ \end{array} \right]\quad = \quad \left[ \begin{array}{l} Potential\;for \\ \\ New\;Physics \\ \end{array} \right] $$
γ, e and μ play a central role both in physics strategy and possible detector resolution. The later point being the key to “seeing new things” just as Galileo’s telescope or Leeuwenhoek’s microscope.


Light Output Drift Chamber Hadron Calorimeter Muon Track Proportional Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Conversi, T. Massam, Th. Müller, A.Zichichi, Nuovo Cim XL A, 2, 690, (1965).CrossRefGoogle Scholar
  2. [2]
    J.G. Asbury et al., Phys.Rev.Lett.18, (1967), 56.CrossRefGoogle Scholar
  3. [2a]
    H. Alvensleben et al., Phys.Rev.Lett. 25, (1970), 1373.CrossRefGoogle Scholar
  4. [3]
    J.J. Aubert et al., Phys.Rev.Lett.33 (1974), 1404.CrossRefGoogle Scholar
  5. [4]
    “A Proposal to Search for Leptonic Quarks and Heavy Leptons produced by Adone” A. Zichichi et al., Bologna-CERN-Frascati Coll. INFNAE-67/3, 20 March 1967.Google Scholar
  6. [5]
    M.L. Perl et al., Phys.Rev.Lett.35, (1975), 1489.CrossRefGoogle Scholar
  7. [6]
    D.P. Barber et al., Phys.Rev.Lett.45, (1980), 1904.Google Scholar
  8. [7]
    S.W. Herb et al., Phys.Rev.Lett.39, (1977), 252.CrossRefGoogle Scholar
  9. [8]
    D. Antreasyan et al., Phys.Rev.Lett 45, (1980), 863.CrossRefGoogle Scholar
  10. [9]
    G. Arnison et al., Phys.Lett. B 122 (1983), 103,CrossRefGoogle Scholar
  11. [9a]
    M. Banner et al., Phys.Lett. 122 (1983) 476.Google Scholar
  12. [10]
    “The L3 Technical Proposal” S.C.C.Ting et al, CERN, LEPC(1983).Google Scholar
  13. [11]
    A.H. Walenta, IEEE NS-26,(1979), 73 and J.Fehlmann, PhD Thesis, ETH (1988).Google Scholar
  14. [12]
    J.A. Bakken et al., NIM A 270 (1988), Sand references therein.Google Scholar
  15. [13]
    A. Ariefiev et al., NIM A 245 (1986), 71 and H.S.Chen et al., L3 DOC 5–62 (to be published).Google Scholar
  16. [14]
    U. Becker et al., NIM 180 (1981), 61.Google Scholar
  17. [14a]
    P. Duinker et al, NIM 201 (1982), 357.CrossRefGoogle Scholar
  18. [15]
    U. Becker et al., NIM 196 (1982), 381. H.Groenstege et al., NIKHEF int.Report 1985.CrossRefGoogle Scholar
  19. [16]
    D. Antreasyan et al., NIM A252 (1986) 304CrossRefGoogle Scholar
  20. [16a]
    U. Becker et al, NIM 225(1984) 456.CrossRefGoogle Scholar
  21. [16b]
    U. Becker et al., NIM 225 (1984) 456.CrossRefGoogle Scholar
  22. [17]
    U. Becker et al., NIM A 253 (1986) 15CrossRefGoogle Scholar
  23. [17a]
    U. Becker et al., NIM A263 (1988) 14.CrossRefGoogle Scholar
  24. [18]
    A. Zichichi, LAA Project, CERN 1986.Google Scholar
  25. [19]
    G.Herten, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Ulrich Becker
    • 1
    • 2
  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland
  2. 2.MITCambridgeUSA

Personalised recommendations