Advertisement

Mapping Reaction Pathways from Crystallographic Data

  • Eli Shefter

Abstract

To appreciate biochemical processes at the molecular level, it is necessary to have a basic understanding of the stereochemical course of reactions. Though much data have been accumulated on a variety of reaction mechanisms from kinetic studies, the detailed course of the structural transformations that take place during a reaction has eluded the experimentalist. At present, experimental techniques are not capable of directly measuring the geometrical changes that occur during a reaction, apart from characterizing the products, reactants, and stable intermediates. Quantum-mechanical calculations, which are of value in deriving such information for very simple reactions, are beset with numerous practical difficulties when complex organic systems are to be treated.

Keywords

Reaction Path Bond Number Bovine Pancreatic Trypsin Inhibitor Tetrahedral Intermediate Basal Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Bürgi, Chemical reaction coordinates from crystal structure data. I, Inorg. Chem. 12, 2321–2325 (1973).CrossRefGoogle Scholar
  2. 2.
    H. B. Bürgi, J. D. Dunitz, and E. Shefter, Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group, J. Am. Chem. Soc. 95, 5065–5067 (1973).CrossRefGoogle Scholar
  3. 3.
    H. B. Bürgi, J. D. Dunitz, and E. Shefter, Chemical reaction paths. IV. Aspects of O C=0 interactions in crystals, Acta Crystallogr. Sect. B 30, 1517–1527 (1974).CrossRefGoogle Scholar
  4. 4.
    P. Murray-Rust, H. B. Bürgi, and J. D. Dunitz, Chemical reaction paths. V. The SN I reaction of tetrahedral molecules, J. Am. Chem. Soc. 97, 921–922 (1975).CrossRefGoogle Scholar
  5. 5.
    H. B. Bürgi, Stereochemistry of reaction paths as determined from crystal structure data-a relationship between structure and energy, Angew. Chem. Int. Ed. Engl. 14, 460–473 (1975).CrossRefGoogle Scholar
  6. 6.
    L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, N.Y. (1963).Google Scholar
  7. 7.
    A. Bondi, Van der Waals volumes and radii, J. Phys. Chem. 68, 441–451 (1964).CrossRefGoogle Scholar
  8. 8.
    C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca, N.Y. (1953).Google Scholar
  9. 9.
    L. Pauling, Atomic radii and interatomic distances in metals, J. Am. Chem. Soc. 69, 542–553 (1947).CrossRefGoogle Scholar
  10. 10.
    H. B. Bürgi, J. D. Dunitz, J. M. Lehn, and G. Wipff, Stereochemistry of reaction paths at carbonyl centers, Tetrahedron 30, 1563–1572 (1974).CrossRefGoogle Scholar
  11. 11(a).
    A. Dedieu and A. Veillard, A comparative study of some SN2 reactions through ab initio calculations, J. Am. Chem. Soc. 94, 6730–6738 (1972).CrossRefGoogle Scholar
  12. (b).
    J. Duke and R. F. W. Bader, A Hartree-Fock SCF calculation of the activation energies for two SN2 reactions, Chem. Phys. Lett. 10, 631–635 (1971).CrossRefGoogle Scholar
  13. 12.
    R. L. Hildebrandt and J. D. Wieser, Average structures of t-butyl chloride and 9D-t-butyl chloride determined by gas-phase electron diffraction, J. Chem. Phys. 55, 4648–4654 (1971).CrossRefGoogle Scholar
  14. 13.
    H. B. Bürgi, J. D. Dunitz, and E. Shefter, Methadone, Cryst. Struct. Commun. 2, 667 (1973).Google Scholar
  15. 14.
    A. Tulinsky and J. H. van den Hende, The crystal and molecular structure of N-brosylmitomycin A, J. Am. Chem. Soc. 89, 2905–2911 (1967).PubMedCrossRefGoogle Scholar
  16. 15.
    D. R. Storm and D. E. Koshland, Jr., Effect of small changes in orientation on reaction rate, J. Am. Chem. Soc. 94, 5815–5825 (1972).CrossRefGoogle Scholar
  17. 16(a).
    G. A. Jeffrey, J. A. Pople, and L. Radom, The application of ab initio molecular orbital theory to the anomeric effect. A comparison of theoretical predictions and experimental data on conformations and bond lengths in some pyranoses and methyl pyranosides, Carbohydr. Res. 25, 117–131 (1972).CrossRefGoogle Scholar
  18. (b).
    G. A. Jeffrey, J. A. Pople, and L. Radom, The application of ab initio molecular orbital theory to structural moieties of carbohydrates, Carbohydr. Res. 38, 81–95 (1974).CrossRefGoogle Scholar
  19. 17.
    A. Lo, E. Shefter, and T. Cochran, Analysis of N-glycosyl bond length in crystal structures of nucleosides and nucleotides, J. Pharm. Sci. 64, 1707–1710 (1975).PubMedCrossRefGoogle Scholar
  20. 18.
    P. Deslongchamps, C. Moreau, D. Frehel, and P. Atlani, The importance of conformation in the ozonolysis of acetals, Can. J. Chem. 50, 3402–3404 (1972).CrossRefGoogle Scholar
  21. 19.
    P. Deslongchamps, P. Atlani, D. Frehel, and A. Malaval, The importance of conformation of the tetrahedral intermediate in the hydrolysis of esters. Selective cleavage of the tetrahedral intermediate controlled by orbital orientation, Can. J. Chem. 50, 3405–3408 (1972).CrossRefGoogle Scholar
  22. 20.
    P. Deslongchamps, C. Lebreux, and R. J. Taillefer, The importance of conformation of the tetrahedral intermediate in the hydrolysis of amides. Selective cleavage of the tetrahedral intermediate controlled by orbital orientation, Can. J. Chem. 51, 1665–1669 (1973).CrossRefGoogle Scholar
  23. 21.
    P. Deslongchamps, R. Chenevert, R. J. Taillefer, C. Moreau, and J. K. Saunders, The hydrolysis of cyclic orthoesters. Stereoelectronic control in the cleavage of hemiorthoester tetrahedral intermediates, Can. J. Chem. 53, 1601–1615 (1975).CrossRefGoogle Scholar
  24. 22.
    P. Deslongchamps, S. Dube, C. Lebreux, D. R. Patterson, and R. J. Taillefer, The hydrolysis of imidate salts. Stereoelectronic control in the cleavage of the hemiorthoamide tetrahedral intermediate, Can. J. Chem. 53, 2791–2807 (1975).CrossRefGoogle Scholar
  25. 23.
    P. Deslongchamps, Stereoelectric control in the cleavage of tetrahedral intermediates in the hydrolysis of esters and amides, Tetrahedron 31, 2463–2490 (1975).CrossRefGoogle Scholar
  26. 24.
    J. M. Lehn, G. Wipff, and H. B. Bürgi, Stereoelectronic properties of tetrahedral species derived from carbonyl groups. Ab initio study of the hydroxymethanes, Hely. Chim. Acta 57, 493–496 (1974).Google Scholar
  27. 25.
    J. M. Lehn and G. Wipff, Stereoelectronic properties and reactivity of the tetrahedral intermediate in amide hydrolysis. Nonempirical study of aminodihydroxymethane and relation to enzyme catalysis, J. Am. Chem. Soc. 96, 4048–4050 (1974).PubMedCrossRefGoogle Scholar
  28. 26.
    J. B. P. A. Wijnberg and W. N. Speckamp, New total synthesis of eserine-type alkaloids via regioselective NaBH4-reduction of imides, Tetrahedron Lett. 1975, 4035–4038.Google Scholar
  29. 27.
    D. M. Bailey and R. E. Johnson, Reduction of cyclic anhydrides with NaBH4. Versatile lactone synthesis, J. Org. Chem. 35, 3574–3576 (1970).CrossRefGoogle Scholar
  30. 28.
    D. Y. Curtin and L. L. Miller, 1,3-Acyl migrations in unsaturated triad (allyloid) systems. Rearrangements of N-(2,4-dinitrophenyl)benzimidoyl benzoates, J. Am. Chem. Soc. 89, 637–645 (1967).CrossRefGoogle Scholar
  31. 29.
    D. Y. Curtin, S. R. Byrn, and D. B. Pendergrass, Thermal rearrangement of arylazotribenzoylmethanes in the solid state. Examination with differential thermal analysis, J. Org. Chem. 34, 3345–3349 (1969).CrossRefGoogle Scholar
  32. 30.
    D. B. Pendergrass, D. Y. Curtin, and I. C. Paul, X-ray crystal structure and solid state rearrangement of phenylazotribenzoylmethane and the X-ray crystal structure of x-p-bromophenylazo-ß-benzoyloxybenzalacetophenone, J. Am. Chem. Soc. 94, 8722–8730 (1972).CrossRefGoogle Scholar
  33. 31.
    R. M. Sweet, H. T. Wright, J. Janin, C. H. Chothia, and D. M. Blow, Chemical structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6-A resolution. Biochemistry 13, 4212–4228 (1974).PubMedCrossRefGoogle Scholar
  34. 32.
    S. A. Bizzozero and B. O. Zweifel, The importance of the conformation of the tetrahedral intermediate for the a-chymotrypsin-catalyzed hydrolysis of peptide substrates, FEBS Lett. 1975, 105–108.Google Scholar
  35. 33.
    A. Ruhlmann, D. Kukla, P. Schwager, K. Bartels, and R. Huber, Bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region, J. Mol. Biol. 77, 417–436 (1973).PubMedCrossRefGoogle Scholar
  36. 34.
    R. Huber, D. Kukla, W. Steigemann, J. Deisenhofer, and A. Jones, in: Proteinase Inhibitors (H. Fritz, H. Tschesche, L. J. Greene, and E. Truscheit, eds.), Bayer Symposium V, p. 497 512, Springer-Verlag New York, Inc., New York (1974).Google Scholar
  37. 35.
    D. Blow, in: Proteinase Inhibitors (H. Fritz, H. Tschesche, L. J. Greene, and E. Truscheit. eds), Bayer Symposium V, p. 473–483, Springer-Verlag New York. Inc., New York (1974).Google Scholar
  38. 36.
    H. B. Bürgi, E. Shefter, and J. D. Dunitz, Chemical reaction paths—VI. A pericyclic ring closure, Tetrahedron 31, 3089–3092 (1975).CrossRefGoogle Scholar
  39. 37.
    C. Altona, H. J. Geise, and C. Romers, Conformation of non-aromatic ring compounds — XXV. Geometry and conformation of ring D in some steroids from X-ray structure determinations, Tetrahedron 24, 13–32 (1968).CrossRefGoogle Scholar
  40. 38.
    E. L. Muetterties and L. J. Gruggenberger, Idealized polytopal forms. Description of real molecules referenced to idealized polygons or polyhedra in geometric reaction path form, J. Am. Chem. Soc. 96, 1748–1756 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Eli Shefter
    • 1
  1. 1.Department of Pharmaceutics, School of PharmacyState University of New YorkAmherstUSA

Personalised recommendations