Advertisement

Magnetic-Resonance Approaches to Transition-State Structure

  • Albert S. Mildvan

Abstract

Measurement of nuclear magnetic relaxation rates in the presence of paramagnetic probes, an NMR method which determines distances from the individual atoms of a molecule in solution to a nearby paramagnetic reference point, has emerged in the past decade as a useful approach to the study of the conformation and arrangement of enzyme-bound substrates in solution.(1–8) Such NMR studies in solution, like X-ray diffraction in the crystalline state, detect individual atoms. The obvious advantage of observing complexes in solution, with directly measurable kinetic and thermodynamic properties, is that the relevance of such complexes to catalysis is testable.

Keywords

Relaxation Rate Pyruvate Kinase Pyruvate Carboxylase Nuclear Magnetic Resonance Study Magnetic Resonance Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Mildvan, M. Cohn, and J. S. Leigh, Jr., in: Magnetic Resonance in Biological Systems ( A. Ehrenberg, B. G. Malmstrom, and T. Vanngard, eds.), pp. 113–117, Pergamon, Elmsford, N.Y. (1967).Google Scholar
  2. 2.
    A. S. Mildvan, J. S. Leigh Jr., and M. Cohn, Kinetic and magnetic studies of pyruvate kinase. III. The enzyme—metal—phosphoryl bridge complex in the fluorokinase reaction, Biochemistry 6, 1805–1818 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    A. S. Mildvan and M. C. Scrutton, Pyruvate carboxylase. X. The demonstration of direct coordination of pyruvate and a-ketobutyrate by the bound manganese and the formation of enzyme—metal—substrate bridge complexes, Biochemistry 6, 2978–2994 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    A. S. Mildvan and M. Cohn, Aspects of enzyme mechanisms studied by nuclear spin relaxation induced by paramagnetic probes, Adv. Enzymol. 33, 1–70 (1970).PubMedGoogle Scholar
  5. 5.
    A. S. Mildvan and J. L. Engle, Nuclear relaxation measurements of water protons and other ligands, Methods Enzymol. 26C, 654–682 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    A. S. Mildvan, T. Nowak, and C. H. Fung, Nuclear relaxation studies of the role of the divalent cation in the mechanism of pyruvate kinase and enolase: Inner sphere and second sphere complexes, Ann. N.Y. Acad. Sci. 222, 192–210 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    D. L. Sloan and A. S. Mildvan, Magnetic resonance studies of the geometry of bound nicotanamide adenine dinucleotide and isobutyramide on spin-labeled alcohol dehydrogenase, Biochemistry 13, 1711–1718 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    C. H. Fung, R. J. Feldmann, and A. S. Mildvan, 1H and 31P Fourier transform magnetic resonance studies of the conformation of enzyme-bound propionyl coenzyme A on trans-carboxylase, Biochemistry 15, 75–84 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Pauling, Molecular architecture and biological reactions, Chem. Eng. News 24, 1375–1377 (1946).CrossRefGoogle Scholar
  10. 10.
    R. Wolfenden, Analog approaches to the structure of the transition state in enzyme reactions, Acc. Chem. Res. 5, 10–18 (1972).CrossRefGoogle Scholar
  11. 11.
    G. E. Lienhard, Enzymic catalysis and transition-state theory, Science 180, 149 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Schray and J. P. Klinman, The magnitude of enzyme transition state analog binding constants, Biochem. Biophys. Res. Commun. 57, 641–648 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    G. H. Reed and M. Cohn, Structural changes induced by substrates and anions at the active site of creatine kinase, J. Biol. Chem. 247, 3073–3081 (1972).PubMedGoogle Scholar
  14. 14.
    G. H. Reed and A. C. McLaughlin, Structural studies of transition state analog complexes of creatine kinase, Ann. N.Y. Acad. Sci. 222, 118–129 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Cohn, J. S. Leigh, Jr., and G. H. Reed, Mapping active sites of phosphoryl-transferring enzymes by magnetic resonance methods, Cold Spring Harbor Symp. Quant. Biol. 36, 533–540 (1971).CrossRefGoogle Scholar
  16. 16.
    M. Cohn, in: Enzymes Structure and Function, (J. Drenth, R. A. Osterbaan, and C. Veeger, eds.), Proceedings, 8th FEBS Meeting, Vol. 29, p. 59–70, American Elsevier/North-Holland, Amsterdam (1972).Google Scholar
  17. 17.
    A. C. McLaughlin, J. S. Leigh, and M. Cohn, Magnetic resonance study of the three-dimensional structure of creatine kinase—substrate complexes, J. Biol. Chem. 251, 2777–2787 (1976).PubMedGoogle Scholar
  18. 18.(a)
    a) A. S. Mildvan, Acc. Chem. Res. 10, 246–252 (1977).CrossRefGoogle Scholar
  19. 18.(b)
    A. S. Mildvan and R. K. Gupta, Methods in Enzymology,in press (1978).Google Scholar
  20. 19.
    T. J. Swift and R. E. Connick, NMR-relaxation mechanisms of O“ in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere, J. Chem. Phys. 37, 307–320 (1962).CrossRefGoogle Scholar
  21. 20.
    Z. Luz and S. Meiboom, Proton relaxation in dilute solutions of cobalt (II) and nickel (II) ions in methanol and the rate of methanol exchange of the solvation sphere, J. Chem. Phys. 40, 2686–2692 (1964).CrossRefGoogle Scholar
  22. 21.
    I. Solomon, Relaxation processes in a system of two spins, Phys. Rev. 99, 559–565 (1955).CrossRefGoogle Scholar
  23. 22.
    I. Solomon and N. Bloembergen, Nuclear magnetic interactions in the HF molecule, J. Chem. Phys. 25, 261–266 (1956).CrossRefGoogle Scholar
  24. 23.
    N. Bloembergen and L. O. Morgan, Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation, J. Chem. Phys. 34, 842–850 (1961).CrossRefGoogle Scholar
  25. 24.
    M. Cohn and J. Reuben, Paramagnetic probes in magnetic resonance studies of phosphoryl transfer enzymes, Acc. Chem. Res. 4, 214–222 (1971).CrossRefGoogle Scholar
  26. 25.
    J. W. Emsley, J. Feeney, and L. H. Sutcliffe, in: High Resolution NMR Spectroscopy, Vol. I, p. 520, Pergamon, Elmsford, N.Y. (1965).Google Scholar
  27. 26.
    T. L. James, in: NMR in Biochemistry, p. 177, Academic Press, New York (1975).Google Scholar
  28. 27.
    R. A. Dwek, in: NMR in Biochemistry, p. 174, Clarendon Press, Oxford (1973).Google Scholar
  29. 28(a).
    M. Cohn and J. S. Leigh, Magnetic resonance investigations of ternary complexes of enzyme-metal-substrate, Nature (London) 193, 1037–1040 (1962).CrossRefGoogle Scholar
  30. (b).
    M. Cohn, Magnetic resonance studies of metal activation of enzymic reactions of nucleotides and other phosphate substrates, Biochemistry 2, 623–629 (1963).PubMedCrossRefGoogle Scholar
  31. 29.
    T. Nowak, A. S. Mildvan, and G. L. Kenyon, Nuclear relaxation and kinetic studies of the role of Mn’ in the mechanism of enolase, Biochemistry 12, 1690–1701 (1973).PubMedCrossRefGoogle Scholar
  32. 30.
    T. Nowak and A. S. Mildvan, Nuclear magnetic resonance studies of the function of potassium in the mechanism of pyruvate kinase, Biochemistry 11, 2819–2828 (1972).PubMedCrossRefGoogle Scholar
  33. 31(a).
    R. R. Ernst and W. A. Anderson, Application of Fourier transform spectroscopy to magnetic resonance, Rev. Sci. Instrum. 37, 93–102 (1966).CrossRefGoogle Scholar
  34. (b).
    R. L. Vold, J. S. Waugh, M. P. Klein, and D. E. Phelps, Measurement of spin relaxation in complex systems, J. Chem. Phys 48, 3831–3832 (1968).CrossRefGoogle Scholar
  35. 32.
    C. H. Fung, A. S. Mildvan, A. Allerhand, R. Komoroski, and M. C. Scrutton, Interaction of pyruvate with pyruvate carboxylase and pyruvate kinase as studied by paramagnetic effects on 13C relaxation rates, Biochemistry 12, 620–629 (1973).PubMedCrossRefGoogle Scholar
  36. 33.
    G. G. McDonald and J. S. Leigh, Jr., A new method for measuring longitudinal relaxation times, J. Magn. Reson. 9, 358–362 (1973).Google Scholar
  37. 34.
    M. C. Scrutton and A. S. Mildvan, Pyruvate carboxylase: Nuclear magnetic resonance studies of the enzyme-manganese-oxalacelate and enzyme-manganese-pyruvate bridge complexes, Arch. Biochem. Biophys. 140, 131–151 (1970).PubMedCrossRefGoogle Scholar
  38. 35.
    J. Reuben and M. Cohn, Magnetic resonance studies of manganese(I1) binding sites of pyruvate kinase, J. Biol. Chem. 245, 6539–6546 (1970).PubMedGoogle Scholar
  39. 36.
    C. D. Barry, J. Glasel, R. J. P. Williams, and A. V. Xavier, Quantitative determination of conformations of flexible molecules in solution using lanthanide ions as nuclear magnetic resonance probes: Application to adenosine-5’-monophosphate, J. Mol. Biol. 84, 471–502 (1974).PubMedCrossRefGoogle Scholar
  40. 37.
    C. D. Barry, D. R. Martin, R. J. P. Williams, and A. V. Xavier, Quantitative determination of the conformation of cyclic 3’,5’-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes, J. Mol. Biol. 84, 491–502 (1974).PubMedCrossRefGoogle Scholar
  41. 38.
    B. Furie, J. H. Griffen, R. J. Feldmann, A. Sokoloski, and A. N. Schechter, The active site of staphylococcal nuclease: Paramagnetic relaxation of bound nucleotide inhibitor nuclei by lanthanide ions, Proc. Nut. Acad. Sci. USA 71, 2833–2837 (1974).CrossRefGoogle Scholar
  42. 39.
    D. L. Sloan, L. A. Loeb, A. S. Mildvan, and R. L. Feldmann, Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation, J. Biol. Chem. 250, 8913–8920 (1975).PubMedGoogle Scholar
  43. 40.
    H. Weiner, Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase. 1. Synthesis, kinetics, and electron paramagnetic resonance studies, Biochemistry 8, 526–533 (1969).PubMedCrossRefGoogle Scholar
  44. 41.
    A. S. Mildvan and H. Weiner, Interaction of a spin-labeled analogue of nicotinamide adenine dinucleotide with alcohol dehydrogenase, J. Biol. Chem. 244, 2465–2475 (1969).PubMedGoogle Scholar
  45. 42.
    A. S. Mildvan and H. Weiner, Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase. Il. Proton relaxation rate and electron paramagnetic resonance studies of binary and ternary complexes, Biochemistry 8, 552–562 (1969).PubMedCrossRefGoogle Scholar
  46. 43.
    A. S. Mildvan, L. Waber, J. J. Villafranca, and H. Weiner, in: Structure and Function of Oxidation Reduction Enzymes ( A. Akeson and A. Ehrenberg, eds.), p. 745–754, Pergamon, Elmsford, N.Y. (1972).Google Scholar
  47. 44.
    T. R. Krugh, Proximity of the nucleotide monophosphate and triphosphate binding sites on deoxyribonucleic acid polymerase, Biochemistry 10, 2594–2599 (1971).PubMedCrossRefGoogle Scholar
  48. 45.
    R. K. Gupta, C. H. Fung, and A. S. Mildvan, Chromium(III)-adenosine triphosphate as a paramagnetic probe to determine intersubstrate distances on pyruvate kinase, J. Biol. Chem. 251, 2421–2430 (1976).PubMedGoogle Scholar
  49. 46.
    S. W. Weidmann, G. R. Drysdale, and A. S. Mildvan, Interaction of a spin-labeled analog of acetyl coenzyme A with citrate synthase. Paramagnetic resonance and proton relaxation rate studies of binary and ternary complexes, Biochemistry 12, 1874–1883 (1973).CrossRefGoogle Scholar
  50. 47(a).
    C. H. Fung, R. K. Gupta, and A. S. Mildvan, Magnetic resonance studies of the proximity and spatial arrangement of propionyl coenzyme A and pyruvate on a biotin—metalloenzyme, transcarboxylase, Biochemistry 15, 85–92 (1976).PubMedCrossRefGoogle Scholar
  51. 47(b).
    R. M. Oesterling and A. S. Mildvan, unpublished observations.Google Scholar
  52. 48(a).
    H. G. Wood, H. Lochmüller, C. Riepertinger, and F. Lynen, Transcarboxylase. IV. Function of biotin and the structure and properties of the carboxylated enzyme, Biochem. Z. 337, 247–266 (1963).PubMedGoogle Scholar
  53. (b).
    D. B. Northrop and H. G. Wood, Transcarboxylase. VII. Exchange reactions and kinetics of oxalate inhibition, J. Biol. Chem. 244, 5820–5827 (1969).PubMedGoogle Scholar
  54. 49.
    F. Ahmad, B. Jacobson, B. Chuang, W. Brattin, and H. G. Wood, Isolation of peptides from the carboxyl carrier subunit of transcarboxylase. Role of the non-biotinyl peptide in assembly, Biochemistry 14, 1606–1611 (1975).PubMedCrossRefGoogle Scholar
  55. 50.
    C. H. Fung, A. S. Mildvan, and J. S. Leigh, Jr., Electron and nuclear magnetic resonance studies of the interaction of pyruvate with transcarboxylase, Biochemistry 13, 1160–1169 (1974).PubMedCrossRefGoogle Scholar
  56. 51.
    D. L. Sloan, J. M. Young, and A. S. Mildvan, Nuclear magnetic resonance studies of substrate interaction with cobalt substituted alcohol dehydrogenase from liver, Biochemistry 14, 19982008 (1975).Google Scholar
  57. 52.
    H. Miziorko and A. S. Mildvan, Electron paramagnetic resonance, 1H, and “C nuclear magnetic resonance studies of the interaction of manganese and bicarbonate with ribulose 1,5-diphosphate carboxylase, J. Biol. Chem. 249, 2743–2750 (1974).PubMedGoogle Scholar
  58. 53.
    R. Y. Hsu, A. S. Mildvan, G. G. Chang, and C. H. Fung, Mechanism of malic enzyme from pigeon liver: Magnetic resonance and kinetic studies of the role of Mn’. J. Biol. Chem. 251, 6574–6583 (1976).PubMedGoogle Scholar
  59. 54.
    D. B. Northrop, Transcarboxylase. VI. Kinetic analysis of the reaction mechanism, J. Biol. Chem. 244, 5808–5819 (1969).PubMedGoogle Scholar
  60. 55.
    I. A. Rose, E. L. O’Connell, and F. Solomon, Intermolecular tritium transfer in the trans-carboxylase reaction, J. Biol. Chem. 251, 902–904 (1976).PubMedGoogle Scholar
  61. 56.
    J. Retey and F. Lynen, Zur biochemischen funktion des biotins. IX. Der sterische verlauf der carboxylierung von propionyl-CoA, Biochem. Z. 342, 256–271 (1965).PubMedGoogle Scholar
  62. 57.
    E. T. Maggio, G. L. Kenyon, A. S. Mildvan, and G. D. Hegeman, Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis, Biochemistry 14, 1131–1139 (1975).PubMedCrossRefGoogle Scholar
  63. 58.
    J. P. Klinman, in: Isotope Effects on Enzyme Catalyzed Reactions (W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds.), pp. 176–208, University Park Press, Baltimore (1977).Google Scholar
  64. 59.
    R. K. Gupta and A. S. Mildvan, Nuclear relaxation studies on human methemoglobin. Observation of cooperativity and alkaline Bohr effect with inositol hexaphosphate, J. Biol. Chem. 250, 246–253 (1975).PubMedGoogle Scholar
  65. 60.
    K. B. J. Schowen, Chapter 6 in this volume.Google Scholar
  66. 61.
    A. S. Mildvan, R. D. Kobes, and W. J. Rutter, Magnetic resonance studies of the role of the divalent cation in the mechanism of yeast aldolase, Biochemistry 10, 1191–1204 (1971).PubMedCrossRefGoogle Scholar
  67. 62.
    E. P. Kang, C. B. Storm, and F. W. Carson, Cobalt(III) carboxypeptidase A: Preparation and esterase activity, Biochem. Biophys. Res. Commun. 49, 621–625 (1972).PubMedCrossRefGoogle Scholar
  68. 63.
    J. M. Young, K. J. Schray, and A. S. Mildvan, Proton magnetic relaxation studies of the interaction of D-Xylose and xylitol with D-xylose isomerase, J. Biol. Chem. 250, 9021–9027 (1975).PubMedGoogle Scholar
  69. 64.
    A. S. Mildvan, in: Bioinorganic Chemistry, A.C.S. Advances in Chemistry, Vol. 100, pp. 390412 (1971).Google Scholar
  70. 65(a).
    J. J. Villafranca and A. S. Mildvan, The mechanism of aconitase action. III. Detection and properties of enzyme—metal—substrate and enzyme—metal—inhibitor bridge complexes with manganese(II) and iron(II), J. Biol. Chem. 247, 3454–3463 (1972).PubMedGoogle Scholar
  71. (b).
    H. L. Carrell and J. P. Glusker, Manganous citrate decahydrate, Acta Crystallogr. Sect. B 29, 638–640 (1973).CrossRefGoogle Scholar
  72. (c).
    T. James and M. Cohn, Structural aspects of manganese—pyruvate kinase substrate and inhibitor complexes deduced from proton magnetic relaxation rates of pyruvate and a phosphoenolpyruvate analog, J. Biol. Chem. 249, 3519–3526 (1974).PubMedGoogle Scholar
  73. 66.
    E. Melamud and A. S. Mildvan, Magnetic resonance studies of the interaction of Co’ and phosphoenolpyruvate with pyruvate kinase, J. Biol. Chem. 250, 8193–8201 (1975).PubMedGoogle Scholar
  74. 67.
    D. L. Sloan and A. S. Mildvan, Nuclear magnetic relaxation studies of the conformation of adenosine 5’-triphosphate on pyruvate kinase from rabbit muscle, J. Biol. Chem. 251, 24122420 (1976).Google Scholar
  75. 68.
    R. K. Gupta, R. M. Oesterling, and A. S. Mildvan, Biochemistry 15, 2881–2887 (1976).PubMedCrossRefGoogle Scholar
  76. 69.
    A. S. Mildvan, D. L. Sloan, C. H. Fung, R. K. Gupta, and E. Melamud, Arrangement and conformations of substrates at the active site of pyruvate kinase from model building studies based on magnetic resonance data, J. Biol. Chem. 251, 2431–2434 (1976).PubMedGoogle Scholar
  77. 70.
    D. K. Stammers and H. Muirhead, Three-dimensional structure of cat muscle pyruvate kinase at 6 X resolution, J. Mol. Biol. 95, 213–225 (1975).PubMedCrossRefGoogle Scholar
  78. 71.
    W. J. Ray and A. S. Mildvan, Arrangement of the phosphate-and metal-binding subsites of phosphoglucomutase. Intersubsite distance by means of nuclear magnetic resonance measurements, Biochemistry 12, 3733–3743 (1973).PubMedCrossRefGoogle Scholar
  79. 72.
    C. M. Grisham and A. S. Mildvan, Magnetic resonance and kinetic studies of Na’ + K’ ATPase, J. Supramol. Struct. 3, 304–313 (1975).PubMedCrossRefGoogle Scholar
  80. 73.
    E. J. Milner-White and D. C. Watts, Inhibition of adenosine 5’-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site, Biochem. J. 122, 727–740 (1971).Google Scholar
  81. 74.
    A. S. Mildvan and C. M. Grisham, The role of divalent cations in the mechanism of enzyme catalyzed phosphoryl and nucleotidyl transfer reactions, Struct. Bonding (Berlin) 20, 1–21 (1974).CrossRefGoogle Scholar
  82. 75(a).
    T. Kornberg and A. Kornberg, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. X, p. 1 19144, Academic Press, New York (1974).Google Scholar
  83. (b).
    A. Kornberg, DNA Synthesis, W. H. Freeman, San Francisco (1974).Google Scholar
  84. 76.
    L. A. Loeb, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. X, p. 173–209, Academic Press, New York (1974).Google Scholar
  85. 77.
    J. P. Slater, A. S. Mildvan, and L. A. Loeb, Zinc in DNA polymerases, Biochem. Biophys. Res. Commun. 44, 37–43 (1971).PubMedCrossRefGoogle Scholar
  86. 78.
    C. F. Springgate, A. S. Mildvan, R. Abramson, J. L. Engle, and L. A. Loeb, Escherichia coli deoxyribonucleic acid polymerase I, a zinc metalloenzyme, J. Biol. Chem. 248, 5987–5993 (1973).PubMedGoogle Scholar
  87. 79(a).
    B. J. Poiesz, N. Battula, and L. A. Loeb, Zinc in reverse transcriptase, Biochem. Biophys. Res. Commun. 56, 959–964 (1974).PubMedCrossRefGoogle Scholar
  88. (b).
    B. J. Poiesz, G. Seal, and L. A. Loeb, Reverse transcriptase: Correlation of zinc content with activity, Proc. Nat. Acad. Sci. USA 71, 4892–4896 (1975).CrossRefGoogle Scholar
  89. 80.
    J. P. Slater, I. Tamir, L. A. Loeb, and A. S. Mildvan, The mechanism of Escherichia coli deoxyribonucleic acid polymerase I, J. Biol. Chem. 247, 6784–6794 (1972).PubMedGoogle Scholar
  90. 81.
    D. A. Usher, E. S. Erenrich, and F. Eckstein, Geometry of the first step in the action of ribonuclease-A, Proc. Nat. Acad. Sci USA 69, 115 (1972).PubMedCrossRefGoogle Scholar
  91. 82.
    A. S. Mildvan, Mechanism of enzyme action, Ann. Rev. Biochem. 43, 357–399 (1974).PubMedCrossRefGoogle Scholar
  92. 83.
    E. C. Travaglini, A. S. Mildvan, and L. Loeb, Kinetic analysis of Escherichia coli deoxyribonucleic acid polymerase I, J. Biol. Chem. 250, 8647–8656 (1975).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Albert S. Mildvan
    • 1
  1. 1.The Institute for Cancer ResearchFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations