Advertisement

Heavy-Atom Isotope Effects in Enzyme-Catalyzed Reactions

  • Marion H. O’Leary

Abstract

Various methods are used for studies of enzyme mechanisms. Heavy-atom isotope effects are unique among kinetic methods in the extent to which they provide specific information about the rate-determining step* and other relatively slow steps in the mechanism. Because of this specificity, they are complementary to the usual steady-state and rapid-kinetics techniques.

Keywords

Isotope Effect Kinetic Isotope Effect Methyl Formate Rate Determine Tetrahedral Intermediate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fry, in: Isotope Effects in Chemical Reactions (C. J. Collins and N. S. Bowman, eds,), pp. 364–414, Van Nostrand Reinhold, New York (1970).Google Scholar
  2. 2.
    J. Bigeleisen and M. Wolfsberg, Theoretical and experimental aspects of isotope effects in chemical kinetics, Adv. Chem. Phys 1, 15–76 (1958).CrossRefGoogle Scholar
  3. 3.
    L. Melander, Isotope Effects on Reaction Rates, Ronald, New York (1960).Google Scholar
  4. 4.
    A. MacColl, Heavy-atom kinetic isotope effects, Annu. Rep. Chem. Soc. B 71, 77–101 (1974).Google Scholar
  5. 5.
    M. J. Stern and M. Wolfsberg, “Heavy-Atom Kinetic Isotope Effects, an Indexed Bibliography,” NBS Special Publication No. 349, U.S. Department of Commerce, Washington, D.C. (1972).Google Scholar
  6. 6.
    H. Simon and D. Palm, Isotope effects in organic chemistry and biochemistry, Angell,. Chem. Int. Ed. Engl 5, 920–933 (1966).CrossRefGoogle Scholar
  7. 7.
    J. H. Richards, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. 2, pp. 321–333, Academic Press, New York (1970).Google Scholar
  8. 8.
    a) J. F. Kirsch, Mechanism of enzyme action, Annu. Rev. Biochem. 42, 205–234 (1973). (b) W. W. Cleland, M. H. O’Leary, and D. B. Northrop, Isotope Effects on Enzyme-Catalyzed Reactions, University Park Press, Baltimore (1977). (c) M. H. O’Leary, in: Bioorganic Chemistry (E. E. van Tamelen, ed.), pp. 259–275, Academic Press, New York (1977).Google Scholar
  9. 9.
    W. A. Van Hook, in: Isotope Effects in Chemical Reactions ( C. J. Collins and N. S. Bowman, eds.), pp. 1–89, Van Nostrand Reinhold, New York (1970).Google Scholar
  10. 10.
    P. C. Vogel and M. J. Stern, Temperature dependences of kinetic isotope effects, J. Chem. Phys 54, 779–796 (1971).CrossRefGoogle Scholar
  11. 1.
    T. T.-S. Huang, W. J. Kass, W. E. Buddenbaum, and P. E. Yankwich, Anomalous temperature dependence of kinetic carbon isotope effects and the phenomenon of crossover, J. Phys. Chem 72, 4431–4446 (1968).CrossRefGoogle Scholar
  12. 12.
    M. J. Stern and P. C. Vogel, Relative “C—”C 3C kinetic isotope effects, J. Chem. Phys 55, 2007–2013 (1971).CrossRefGoogle Scholar
  13. 13.
    G. A. Ropp and V. F. Raaen, A comparison of the magnitudes of the isotope intermolecular effects in the decarboxylations of malonic-1-C14 acid and malonic-2-C14 acid at 154’, J. Am. Chem. Soc 74, 4992–4994 (1952).CrossRefGoogle Scholar
  14. 14.
    A. Fry and M. Calvin, The C’ 4 isotope effect in the decarboxylation of a-naphthyl-and phenylmalonic acids, J. Phys. Chem 56, 901–905 (1952).CrossRefGoogle Scholar
  15. 15.
    H. H. Huang and F. A. Long, The decarboxylation of azulene-1-carboxylic acid. II. Carbon-13 isotope effects, J. Am. Chem. Soc 91, 2872–2875 (1969).CrossRefGoogle Scholar
  16. 16.
    J. Bron and J. B. Stothers, Carbon-13 kinetic isotope effects. III. Temperature dependence of k’ 2 /k13 for 1-bromo-l-phenylethane alcoholysis, Can. J. Chem 46, 1435–1439 (1968).CrossRefGoogle Scholar
  17. 17.
    J. B. Stothers and A. N. Bourns, Carbon-13 kinetic isotope effects in the solvolysis of 1bromo-l-phenylethane, Can. J. Chem 38, 923–935 (1960).CrossRefGoogle Scholar
  18. 18.
    J. Bron and J. B. Stothers, Carbon-13 kinetic isotope effects. V. Substituent effects on k 12 ) k 13 for alcoholysis of 1-phenyl-l-bromoethane, Can. J. Chem. 47, 2506–2509 (1969).CrossRefGoogle Scholar
  19. 19.
    J. Bron and J. B. Stothers, Carbon-13 kinetic isotope effects. IV. The effect of temperature on 0 2 103 for benzyl halides in bimolecular reactions, Can. J. Chem 46, 1825–1829 (1968).CrossRefGoogle Scholar
  20. 20.
    C. R. Turnquist, J. W. Taylor, E. P. Grimsrud, and R. C. Williams, Temperature dependence of chlorine kinetic isotope effects for aliphatic chlorides, J. Am. Chem. Soc 95, 4133–4138 (1973).CrossRefGoogle Scholar
  21. 21.
    D. G. Graczyk and J. W. Taylor, Chlorine kinetic isotope effects in nucleophilic substitution reactions. Support for the ion pairs mechanism in the reactions of p-methoxybenzyl chloride in 70% aqueous acetone, J. Am. Chem. Soc 96, 3255–3261 (1974).CrossRefGoogle Scholar
  22. 22.
    E. P. Grimsrud and J. W. Taylor, Chlorine kinetic isotope effects in nucleophilic displacements at a saturated carbon, J. Am. Chem. Soc 92, 739–741 (1970).CrossRefGoogle Scholar
  23. 23.
    C. B. Sawyer and J. F. Kirsch, Kinetic isotope effects for reactions of methyl formatemethoxyl-’80’, J. Am. Chem. Soc 95, 7375–7381 (1973).CrossRefGoogle Scholar
  24. 24.
    G. M. Blackburn and W. P. Jencks, The mechanism of the aminolysis of methyl formate. J. Am. Chem. Soc 90, 2638–2645 (1968).CrossRefGoogle Scholar
  25. 25.
    M. H. O’Leary and J. F. Marlier, unpublished results.Google Scholar
  26. 26.
    M. H. O’Leary, unpublished results.Google Scholar
  27. 27.
    C. A. Bunton, T. A. Lewis, and D. R. Llewellyn, The mechanism of hydrolysis at carbonyl carbon, Chem. Ind. (London) 1954, 1154–1155.Google Scholar
  28. 28.
    M. L. Bender and R. D. Ginger, Solvent effects in the hydrolysis of an ester, an amide, and an acid chloride involving carbonyl-oxygen exchange, Suom. Kemistil. B 33, 25–30 (1960).Google Scholar
  29. 29.
    M. L. Bender and M. C. Chen, Acylium ion formation in the reactions of carboxylic acid derivatives. III. The hydrolysis of 4-substituted-2,6-dimethylbenzoyl chlorides, J. Am. Chem. Soc 85, 30–36 (1963).CrossRefGoogle Scholar
  30. 30.
    C. G. Mitton and R. L. Schowen, Oxygen isotope effects by a noncompetitive technique: The transition-state carbonyl stretching frequency in ester cleavage, Tetrahedron Lett. 1968, 5803–5806.Google Scholar
  31. 31.
    L. L. Brown and J. S. Drury, Nitrogen isotope effects in the decomposition of diazonium salts, J. Chem. Phys 43, 1688–1691 (1965).CrossRefGoogle Scholar
  32. 32.
    C. G. Swain, J. E. Sheats, and K. G. Harbison, Nitrogen isotope effects in the hydrolysis of benzenediazonium salts, J. Am. Chem. Soc 97, 796–798 (1975).CrossRefGoogle Scholar
  33. 33.
    A. Fry, Isotope effect studies of elimination reactions, Chem. Soc. Rev 1, 163–210 (1972).CrossRefGoogle Scholar
  34. 34.
    P. J. Smith and A. N. Bourns, Isotope effect studies of elimination reactions. VI. The mechanism of the bimolecular elimination reaction of 2-arylethylammonium ions, Can. J. Chem 48, 125–132 (1970).CrossRefGoogle Scholar
  35. 35.
    J. Banger, A. Jaffe, A.-C. Lin, and W. H. Saunders, Jr., Carbon isotope effects on proton transfers from carbon and the question of hydrogen tunneling, J. Am. Chem. Soc 97, 7177–7178 (1975).CrossRefGoogle Scholar
  36. 36.
    J. Banger, A. Jaffe, A.-C. Lin, and W. H. Saunders, Jr., Carbon-13 isotope effects on proton transfers from carbon, J. Am. Chem. Soc 97, 7177–7178 (1975).CrossRefGoogle Scholar
  37. 37.
    P. J. Smith and A. N. Bourns, Isotope effect studies on elimination reactions. IX. The nature of the transition state for the E2 reaction of 2-arylethylammonium ions with ethoxide in ethanol, Can. J. Chem 52, 749–760 (1974).CrossRefGoogle Scholar
  38. 38.
    J. Bigeleisen, M. W. Lee, and F. Mandel, Equilibrium isotope effects, Annu. Rev. Phys. Chem. 24, 407–440 (1973).CrossRefGoogle Scholar
  39. 39.
    a) H. G. Thode, M. Shima, C. E. Rees, and K. V. Krishnamurty, Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions, Can. J. Chem 43 582–595 (1965). (b) J. W. Bayles, J. Bron, and S. O. Paul, Secondary carbon-13 isotope effect on the ionization of benzoic acid, J. Chem. Soc. Faraday Trans. 1 7 1546–1552 (1976). (c) M. H. O’Leary and C. J. Yapp, Biochem. Biophys. Res. Commun,in press.Google Scholar
  40. 40.
    M. H. O’Leary and A. P. Young, unpublished results.Google Scholar
  41. 41.
    H. G. Thode, R. L. Graham, and J. A. Ziegler, A mass spectrometer and the measurement of isotope exchange factors, Can. J. Res. Sect. B 23, 40–47 (1945).CrossRefGoogle Scholar
  42. 42.
    M. Cohn and H. C. Urey, Oxygen exchange reactions of organic compounds and water, J. Am. Chem. Soc 60, 679–687 (1938).CrossRefGoogle Scholar
  43. 43.
    I. Dostrovsky and F. S. Klein, Mass spectrometric determination of oxygen in water samples, Ind. Eng. Chem. Anal. Ed 24, 414–415 (1952).Google Scholar
  44. 44.
    R. F. Weiss, Helium isotope effect in solution in water and seawater, Science 168, 247–248 (1970).PubMedCrossRefGoogle Scholar
  45. 45.
    J. L. Borowitz and F. S. Klein, Vapor pressure isotope effects in methanol, J. Phys. Chem 75, 1815–1820 (1971).CrossRefGoogle Scholar
  46. 46.
    W. W. Cleland, What limits the rate of an enzyme-catalyzed reaction?, Ace. Chem. Res 8, 145–151 (1975).CrossRefGoogle Scholar
  47. 47.
    C. B. Sawyer and J. F. Kirsch, Kinetic isotope effects for the chymotrypsin catalyzed hydrolysis of ethoxyl-’ 8O labeled specific ester substrates, J. Am. Chem. Soc 97, 1963–1964 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    S. Seltzer, G. A. Hamilton, and F. H. Westheimer, Isotope effects in the enzymatic decarboxylation of oxalacetic acid, J. Am. Chem. Soc 81, 4018–4024 (1959).CrossRefGoogle Scholar
  49. 49.
    M. H. O’Leary and R. L. Baughn, Acetoacetate decarboxylase. Identification of the rate-determining step in the primary amine catalyzed reaction and in the enzymic reaction, J. Am. Chem. Soc 94, 626–630 (1972).PubMedCrossRefGoogle Scholar
  50. 50.
    W. W. Cleland, Partition analysis and the concept of net rate constants as tools in enzyme kinetics, Biochemistry 14, 3220–3224 (1975).PubMedCrossRefGoogle Scholar
  51. 51.
    D. G. Gorenstein, Oxygen-18 isotope effect in the hydrolysis of 2,4-dinitrophenyl phosphate. A monomeric metaphosphate mechanism, J. Am. Chem. Soc 94, 2523–2525 (1972).CrossRefGoogle Scholar
  52. 52.
    M. F. Hegazi, R. T. Borchardt, and R. L. Schowen, unpublished results.Google Scholar
  53. 53.
    G. Hübner, H. Neef, G. Fischer, and A. Schellenberger, r 5N isotope effect as direct evidence for the direct participation of the amino group of thiamine pyrophosphate in the enzymatic decarboxylation of a-ketoacids by yeast pyruvate decarboxylase, Z. Chem 15, 221 (1975).CrossRefGoogle Scholar
  54. 54.
    M. I. Schimerlik, J. E. Rife, and W. W. Cleland, Equilibrium perturbation by isotope substitution, Biochemistry 14, 5347–5354 (1975).PubMedCrossRefGoogle Scholar
  55. 55.
    L. O. Krampitz, H. G. Wood, and C. H. Werkman, Enzymatic fixation of carbon dioxide in oxalacetate, J. Biol. Chem 147, 243–253 (1943).Google Scholar
  56. 56.
    J. P. Guthrie and F. Jordan, Amine-catalyzed decarboxylation of acetoacetic acid. The rate constant for decarboxylation of a ß-imino acid, J. Am. Chem. Soc 94, 9136–9141 (1972).CrossRefGoogle Scholar
  57. 57.
    S. Warren, B. Zerner, and F. H. Westheimer, Acetoacetate decarboxylase. Identification of lysine at the active site, Biochemistry 5, 817–823 (1966).PubMedCrossRefGoogle Scholar
  58. 58.
    G. A. Hamilton, Studies on the mechanism of enzymatic decarboxylation, Ph. D. dissertation, Harvard University, Cambridge, Mass. (1959).Google Scholar
  59. 59.
    M. H. O’Leary, D. T. Richards, and D. W. Hendrickson, Carbon isotope effects on the enzymatic decarboxylation of glutamic acid, J. Am. Chem. Soc 92, 4435–4440 (1970).PubMedCrossRefGoogle Scholar
  60. 60.
    M. L. Fonda, Glutamate decarboxylase. Substrate specificity and inhibition by carboxylic acids, Biochemistry 11, 1304–1309 (1972).PubMedCrossRefGoogle Scholar
  61. 61.
    a) T. C. Hoering, The carbon isotope effect on the rate of enzymatic decarboxylation of formic and glutamic acid, Carnegie Inst. Washington Pap. Geophys. Lab. 1363 200–201 (1960–1961). (b) M. H. O’Leary and G. J. Piazza, J. Am. Chem. Soc,in press, and unpublished work.Google Scholar
  62. 62.
    M. L. Uhr, V. W. Thompson, and W. W. Cleland, The kinetics of pig heart triphosphopyridine nucleotide—isocitrate dehydrogenase, J. Biol. Chem 249, 2920–2927 (1974).PubMedGoogle Scholar
  63. 63.
    M. H. O’Leary, The rate-determining step in the oxidative decarboxylation of isocitric acid, Biochim. Biophys. Acta 235, 14–18 (1971).CrossRefGoogle Scholar
  64. 64.
    M. H. O’Leary and J. A. Limburg, Isotope effect studies of the role of metal ions in isocitrate dehydrogenase, Biochemistry 16, 1129–1135 (1977).PubMedCrossRefGoogle Scholar
  65. 65.
    N. Ramachandran, M. Durbano, and R. F. Colman, Kinetic isotope effects in the NAD- and NADP-specific isocitrate dehydrogenases of pig heart, FEBS Lett. 49, 129–133 (1974).PubMedCrossRefGoogle Scholar
  66. 66.
    D. B. Northrop and W. W. Cleland, The kinetics of metal ion activators for TPN-isocitrate dehydrogenase, Fed. Proc. Fed. Am. Soc. Exp. Biol 19, 408 (1970).Google Scholar
  67. 67.
    P. H. Abelson and T. C. Hoering, Carbon isotope fractionation in formation of amino acids by photosynthetic organisms, Proc. Nat. Acad. Sci. USA 47, 623–632 (1961).CrossRefGoogle Scholar
  68. 68.
    M. H. O’Leary, Carbon isotope effect on the decarboxylation of pyruvic acid, Biochem. Biophys. Res. Commun 73, 614–618 (1976).PubMedCrossRefGoogle Scholar
  69. 69.
    a) K. Burton and H. A. Krebs, Free-energy changes with the individual steps of the tri-carboxylic acid cycle, glycolysis and alcoholic fermentation, and with the hydrolysis of the pyrophosphate groups of adenosine triphosphate, Biochem. J. 54, 94–107 (1953). (b) M. J. DeNiro and S. Epstein, Mechanism of carbon isotope fractionation associated with lipid synthesis, Science 197, 261–263 (1977).CrossRefGoogle Scholar
  70. 70.
    G. P. Hess, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. 3, pp. 213–248, Academic Press, New York (1971).Google Scholar
  71. 71.
    M. H. O’Leary and M. D. Kluetz, Identification of the rate-limiting step in the chymotrypsincatalyzed hydrolysis of N-acetyl-L-tryptophanamide, J. Am. Chem. Soc 92, 6089–6090 (1970).PubMedCrossRefGoogle Scholar
  72. 72.
    M. H. O’Leary and M. D. Kluetz, Nitrogen isotope effects on the chymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophanamide, J. Am. Chem. Soc 94, 3585–3589 (1972).PubMedCrossRefGoogle Scholar
  73. 73.
    M. H. O’Leary, M. Urberg, and A. P. Young, Nitrogen isotope effects on the papain-catalyzed hydrolysis of N-benzoyl-L-argininamide, Biochemistry 13, 2077–2081 (1974).PubMedCrossRefGoogle Scholar
  74. 74.
    C. B. Sawyer and J. F. Kirsch, personal communication.Google Scholar
  75. 75.
    M. H. O’Leary and M. D. Kluetz, The rate-determining step in the acylation of papain by N-benzoyl-L-argininamide, J. Am. Chem. Soc 94, 665 (1972).PubMedCrossRefGoogle Scholar
  76. 76.
    G. R. Stark, Aspartate transcarbamylase, J. Biol. Chem 246, 3064–3068 (1971).PubMedGoogle Scholar
  77. 77.
    B. N. Smith, Natural abundance of the stable isotopes of carbon in biological systems, Bio Science 22, 226–231 (1972).Google Scholar
  78. 78.
    T. Whelan, W. M. Sackett, and C. R. Benedict, Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants, Plant Physiol. 51, 1051–1054 (1973).PubMedCrossRefGoogle Scholar
  79. 79.
    a) P. H. Reibach and C. R. Benedict, Fractionation of stable carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants, Plant Physiol. 59, 564–568 (1977). (b) R. Park and S. Epstein, Carbon isotope fractionation during photosynthesis, Geochim. Cosmochim. Acta 21, 110–126 (1960). (e) J. T. Christeller, W. A. Laing, and J. H. Troughton, Isotope discrimination by ribulose 1,5-diphosphate carboxylase, Plant Physiol. 57, 580–582 (1976).CrossRefGoogle Scholar
  80. 80.
    T. C. Hoering and H. T. Ford, The isotope effect in the fixation of nitrogen by Azotobacter, J. Am. Chem. Soc. 82, 376–378 (1960).CrossRefGoogle Scholar
  81. 81.
    Y. Miyake and E. Wada, The isotope effect on the nitrogen in biochemical oxidation—reduction reactions, Rec. Oceanogr. Works Jpn. 11, 1–6 (1971).Google Scholar
  82. 82.
    K. R. Lynn and P. E. Yankwich, 13C kinetic isotope effects in the urease-catalyzed hydrolysis of urea. I. Temperature dependence, Biochim. Biophys. Acta 56, 512–530 (1962).sis of urea. II. Influence of reaction variables other than temperature, Biochim. Biophys. Acta 81, 533–547 (1964).Google Scholar
  83. 84.
    J. A. Schmitt, A. L. Myerson, and F. Daniels, Relative rates of hydrolysis of urea containing C14, C’3, and Cie, J. Phys. Chem 56, 917–920 (1952).CrossRefGoogle Scholar
  84. 85.
    J. A. Schmitt and F. Daniels, The carbon isotope effect in the acid hydrolysis of urea, J. Am. Chem. Soc 75, 3564–3566 (1953).CrossRefGoogle Scholar
  85. 86.
    D. E. Feldman, H.T. Yost, Jr., and B. B. Benson, Oxygen isotope fractionation in reactions catalyzed by enzymes, Science 129, 146–147 (1959).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Marion H. O’Leary
    • 1
  1. 1.Department of ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations