Advertisement

Primary Hydrogen Isotope Effects

  • Judith P. Klinman

Abstract

The important relationship between enzyme catalysis and the enhanced affinity of an enzyme for its substrate in the transition state was first noted by Pauling in 1948.(1) In recent years, attention has been focused on the design of stable analogs of transition states of enzyme reactions, since the structure of high-affinity analogs can provide considerable insight into the structure and energy of enzyme transition states. The factors which give rise to enhanced transition-state analog binding can be complex, however, and many of the analogs which have been tested mimic intermediates rather than true transition states along the enzyme reaction path.(2–5)

Keywords

Isotope Effect Kinetic Isotope Effect Triose Phosphate Isomerase Deuterium Isotope Effect Yeast Alcohol Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Pauling, Chemical achievement and hope for the future, Am. Sci. 36, 51–58 (1948).PubMedGoogle Scholar
  2. 2.
    R. Wolfenden, Analog approaches to the structure of the transition state in enzyme reactions, Acc. Chem. Res. 5, 10–18 (1972).CrossRefGoogle Scholar
  3. 3.
    G. E. Lienhard, Enzymatic catalysis and transition-state theory, Science 180, 149–154 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    W. P. Jencks, Binding energy, specificity, and enzymic catalysis: The Circe effect, Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219–410 (1976).Google Scholar
  5. 5.
    K. Schray and J. P. Klinman, The magnitude of enzyme transition state analog binding constants, Biochem. Biophys. Res. Commun. 57, 641–648 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    J. H. Richards, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. II pp. 321–333, Academic Press, New York (1970).Google Scholar
  7. 7.
    A. Rose, in: The En zymes, 3rd ed. (P. D. Boyer, ed.), Vol. II pp. 281–320, Academic Press, New York (1970).Google Scholar
  8. 8.
    G. Popjak, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. 11 pp. 115–215, Academic Press, New York (1970).Google Scholar
  9. 9.
    J. F. Kirsch, Mechanism of enzyme action, Ann. Rev. Biochem. 42, 205–234 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    J. W. Cornforth, The logic of working with enzymes, Chem. Soc. Rev. 2, 1–20 (1973).CrossRefGoogle Scholar
  11. 11.
    H. Simon and D. Palm, Isotope effects in organic chemistry and biochemistry, Angew Chem. Int. Ed. Engl. 5, 920–933 (1966).CrossRefGoogle Scholar
  12. 12.
    J. Bigeleisen and M. Wolfsberg, Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv. Chem. Phys. 1, 15–76 (1958).CrossRefGoogle Scholar
  13. 13.
    L. Melander, Isotope Effects on Reaction Rates, Ronald, New York (1960).Google Scholar
  14. 14.
    H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald, New York (1966).Google Scholar
  15. 15.
    M. Wolfsberg, Isotope effects, Ann. Rev. Phys. Chem. 20, 449–473 (1969).CrossRefGoogle Scholar
  16. 16.
    C. J. Collins and N. S. Bowman, eds., Isotope Effects in Chemical Reactions, Van Nostrand Reinhold, New York (1971).Google Scholar
  17. 17.
    R. P. Bell, The Proton in Chemistry, 2nd ed. Cornell University Press, Ithaca, N.Y. (1973).Google Scholar
  18. 18.
    C. G. Swain, E. C. Stivers, J. F. Reuwer, Jr., and L. J. Schaad, Use of hydrogen isotope effects to identify the attacking nucleophile in the enolization of ketones catalyzed by acetic acid, J. Am. Chem. Soc. 80, 5885–5893 (1958).CrossRefGoogle Scholar
  19. 19.
    F. H. Westheimer, The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium, Chem. Rev. 61, 265–273 (1961).CrossRefGoogle Scholar
  20. 20.
    J. Bigeleisen, Correlation of kinetic isotope effects with chemical bonding in three-centre reactions, Pure Appl. Chem. 8, 217–223 (1964).CrossRefGoogle Scholar
  21. 21.
    R. A. More O’Ferrall and J. Kouba, Model calculations of primary hydrogen isotope effects, J. Chem. Soc. B 1967, 985–990.Google Scholar
  22. 22.
    R. A. More O’Ferrall, Model calculations of hydrogen isotope effects for non-linear transition studies, J. Chem. Soc. B 1970, 785–790.Google Scholar
  23. 23.
    J. Donahue, in: Structural Chemistry and Molecular Biology ( A. Rich and N. Davidson, eds.), pp. 443–465, W. H. Freeman, San Francisco (1968).Google Scholar
  24. 24.
    W. C. Hamilton, in: Structural Chemistry and Molecular Biology ( A. Rich and N. Davidson, eds.), pp. 466–483, W. H. Freeman, San Francisco (1968).Google Scholar
  25. 25.
    M. S. Lehmann, T. F. Koetzle, and W. C. Hamilton, Precise neutron diffraction structure determination of protein and nucleic acid components, J. Am. Chem. Soc. 94, 2657–2660 (1972).PubMedCrossRefGoogle Scholar
  26. 26.
    P. A. Kollman, and L. C. Allen, The theory of the hydrogen bond, Chem. Rev. 72, 283–303 (1972).CrossRefGoogle Scholar
  27. 27.
    R. Yamdagni and P. Kebarle, Gas phase basicities of amines. Hydrogen bonding in proton-bound amine dimers and proton-induced cyclization of a, w diamines, J. Am. Chem. Soc. 95, 3504–3510 (1973).CrossRefGoogle Scholar
  28. 28.
    A. J. Kresge and Y. Chiang, The effect of bending vibrations on the magnitude of hydrogen isotope effects, J. Am. Chem. Soc. 91, 1025–1026 (1969).Google Scholar
  29. 29.
    A. V. Willi and M. Wolfsberg, The influence of “bond making and bond breaking” in the transition state on hydrogen isotope effects in linear three center reactions, Chem. Ind. London 1964, 2097–2098.Google Scholar
  30. 30.
    E. F. Caldin, Tunneling in proton-transfer reactions in solution, Chem. Rev. 68, 135–156 (1968).Google Scholar
  31. 31.
    W. J. Albery, Isotope effects in proton transfer reactions, Trans. Faraday Soc. 63, 200–206 (1967).CrossRefGoogle Scholar
  32. 32.
    G. S. Hammond, A correlation of reaction rates, J. Am. Chem. Soc. 77, 334–338 (1955).CrossRefGoogle Scholar
  33. 33.
    R. P. Bell and J. E. Crooks, Kinetic hydrogen isotope effects in the ionization of some ketonic substances, Proc. Roy. Soc. London Ser. A 286, 285–299 (1965).CrossRefGoogle Scholar
  34. 34.
    R. P. Bell. F. R. S. Goodall, and D. M. Goodall, Kinetic hydrogen isotope effects in the ionization of some nitroparaffins, Proc. Roy. Soc. London Ser. A 294, 273–297 (1966).CrossRefGoogle Scholar
  35. 35.
    A. F. Cockerill, Mechanisms of elimination reactions, J. Chem. Soc. B 1967, 964–969.Google Scholar
  36. 36.
    R. P. Bell and B. G. Cox, Primary hydrogen isotope effects on the rate of ionization of nitroethane in mixtures of water and dimethyl sulfoxide, J. Chem. Soc. B 1971, 783–785.Google Scholar
  37. 37.
    R. P. Bell, Liversidge lecture, recent advances in the study of kinetic hydrogen isotope effects, Chem. Soc. Rev. 3, 513–544 (1974).Google Scholar
  38. 38.
    F. G. Bordwell and W. J. Boyle, Jr., Kinetic isotope effects for nitro-alkanes and their relationship to transition state structure in proton-transfer reactions, J. Am. Chem. Soc. 97, 3447–3452 (1975). Google Scholar
  39. 39.
    W. A. Pryor and K. G. Kneipp, Primary kinetic isotope effects and the nature of hydrogen-transfer transition states, J. Am. Chem. Soc. 93, 5584–5586 (1971).CrossRefGoogle Scholar
  40. 40.
    R. A. Marcus, Theoretical relations among rate constants, barriers, and bronsted slopes of chemical reactions, J. Phys. Chem. 72, 891–899 (1968).CrossRefGoogle Scholar
  41. 41.
    A. J. Kresge, Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions (W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds.), pp. 37–63, University Park Press, Baltimore (1977). Google Scholar
  42. 42.
    W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York (1969), p. 243.Google Scholar
  43. 43.
    R. P. Bell, The tunnel effect correction for parabolic potential barriers, Trans. Faraday Soc. 55, l-4 (1959).Google Scholar
  44. 44.
    M. J. Stern and R. E. Weston, Jr., Phenomenologic manifestations of quantum mechanical tunnelling. I. Curvature in Arrhenius plots, J. Chem. Phys. 60, 2803–2807 (1974).CrossRefGoogle Scholar
  45. 45.
    M. J. Stem and R. E. Weston, Jr., Phenomenologic manifestations of quantum mechanical tunnelling. II. Effect on Arrhenius pre-exponential factors for primary hydrogen kinetic isotope effects, J. Chem. Phys. 60, 2808–2814 (1974).CrossRefGoogle Scholar
  46. 46.
    M. J. Stern and R. E. Weston, Jr., Phenomenologic manifestations of quantum mechanical tunnelling. III. Effects on relative tritium—deuterium kinetic isotope effects, J. Chem. Phys. 60, 2815–2821 (1974).CrossRefGoogle Scholar
  47. 47.
    E. F. Caldin and S. Mateo, Kinetic isotope effects in various solvents for the proton-transfer reactions of 4-nitrophenylnitromethane with basis, J. Chem. Soc. Chem. Commun. 1973, 854–855.Google Scholar
  48. 48.
    E. F. Caldin and C. J. Wilson, Structure and solvent influences on tunnelling in reactions of 4-nitrophenylnitromethane with nitrogen bases in aprotic solvents, Faraday Symp. Chem. Soc. 10, 121–131 (1975).CrossRefGoogle Scholar
  49. 49.
    R. P. Bell, W. H. Sachs, and R. L. Tranter, Model calculations of isotope effects in proton transfer reactions, Trans. Faraday Soc. 67, 1995–2003 (1970).CrossRefGoogle Scholar
  50. 50.
    J. Banger, A. Jaffe, An-Chung Lin, and W. H. Saunders, Jr., Carbon isotope effects on proton transfers from carbon, and the question of hydrogen tunneling, J. Am. Chem. Soc. 97, 7177–7178 (1975).CrossRefGoogle Scholar
  51. 51.
    S. R. Hartshorn and V. J. Shiner, Calculation of H/D, ’2C/13C, and 12C/14C. Factors from valence force fields derived from a series of simple organic molecules, J. Am. Chem. Soc. 94, 9002–9012 (1972).Google Scholar
  52. 52.
    W. E. Buddenbaum and V. J. Shiner, Jr., in: Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions (W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds.), pp. 1–36, University Park Press, Baltimore (1977).Google Scholar
  53. 53.
    P. F. Cook and W. W. Cleland, Deuterium and tritium isotope effects for liver alcohol dehydrogenase using cyclohexanol, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36, 2078 (1977).Google Scholar
  54. 54.
    J. P. Klinman, unpublished results.Google Scholar
  55. 55.
    H. P. Meloshe, C. T. Monti, and W. W. Cleland, Magnitude of the equilibrium isotope effects on carbon—tritium bond synthesis, Biochem. Biophys. Acta 480, 517–519 (1977).Google Scholar
  56. 56.
    R. L. Schowen, in: Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions ( W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds.), pp. 64–99, University Park Press, Baltimore (1977).Google Scholar
  57. 57.
    R. L. Schowen, Mechanistic deductions from solvent isotope effects, Prog. Phys. Org. Chem. 9, 275–332 (1972).CrossRefGoogle Scholar
  58. 58.
    W. W. Cleland, M. H. O’Leary, and D. B. Northrop, eds., Sixth Steenbock Symposium on Isotope Effects on Enzyme Catalyzed Reactions, University Park Press, Baltimore (1977).Google Scholar
  59. 59.
    W. W. Cleland, Partition analysis and the concept of net rate constants as tools in enzyme kinetics, Biochemistry 14, 3220–3224 (1975).PubMedCrossRefGoogle Scholar
  60. 60.
    J. P. Klinman, The mechanism of enzyme-catalyzed reduced nicotinamide adenine dinucleotide-dependent reductions: Substituent and isotope effects in the yeast alcohol dehydrogenase reaction, J. Biol. Chem. 247, 7977–7987 (1972).PubMedGoogle Scholar
  61. 61.
    J. P. Klinman, Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme catalyzed oxidation of aromatic alcohols, Biochemistry 15, 2018–2026 (1976).Google Scholar
  62. 62.
    D. L. Vander Jagt and L. P. B. Han, Deuterium isotope effects and chemically modified coenzymes as mechanistic probes of yeast alyoxylase-I, Biochemistry 12, 5161–5166 (1973).CrossRefGoogle Scholar
  63. 63.
    K. Bush, V. J. Shiner, Jr., and H. R. Mahler, Deuterium isotope effects on initial rates of the liver alcohol dehydrogenase reaction, Biochemistry 12, 4802–4805 (1972).CrossRefGoogle Scholar
  64. 64.
    W. W. Cleland, What limits the rate of an enzyme-catalyzed reaction, Acc. Chem. Res. 8, 145–151 (1975).CrossRefGoogle Scholar
  65. 65.
    L. Bachan, C. B. Storm, J. W. Wheeler, and S. Kaufman, Isotope effects in the hydroxylation of phenylethylamine by dopamine-ß-hydroxylase, J. Am. Chem. Soc. 96, 6799–6800 (1974).PubMedCrossRefGoogle Scholar
  66. 66.
    D. B. Northrop, Steady state analysis of kinetic isotope effects in enzymatic reactions, Biochemistry 14, 2644–2651 (1975).PubMedCrossRefGoogle Scholar
  67. 67.
    R. H. Abeles, W. R. Frisell, and C. G. Mackenzie, A dual isotope effect in the enzymatic oxidation of deuteromethyl sarcosine, J. Biol. Chem. 235, 853–856 (1960); corrected 235, 1544 (1960).Google Scholar
  68. 68.
    J. L. Robinson and I. A. Rose, The proton transfer reactions of muscle pyruvate kinase, J. Biol. Chem. 247, 1096–1105 (1972).PubMedGoogle Scholar
  69. 69.
    I. A. Rose, E. L. O’Connell, and A. H. Mehler, Mechanism of the aldolase reaction, J. Biol. Chem. 240, 1758–1765 (1965).PubMedGoogle Scholar
  70. 70.
    E. C. Dinovo and P. D. Boyer, Isotopic probes of the enolase reaction mechanism, J. Biol. Chem. 246, 4586–4593 (1971).Google Scholar
  71. 71.
    C. T. Walsh, A. Schonbrunn, and R. H. Abeles, Studies on the mechanism of action of D-amino oxidase, J. Biol. Chem. 246, 6855–6866 (1971).PubMedGoogle Scholar
  72. 72.
    K. Yagi, M. Nishikimi, A. Takai, and N. Ohishi, Mechanism of enzyme action. VI. Kinetic isotope effect on o-amino acid oxidase reaction, Biochim. Biophys. Acta 321, 64–71 (1973).PubMedGoogle Scholar
  73. 73.
    H. J. Bright and D. J. T. Porter, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. XII, pp. 421–505, Academic Press, New York (1976).Google Scholar
  74. 74.
    D. A. Weisblat and B. M. Babior, The mechanism of action of ethanolamine ammonialyase, a B12-dependent enzyme, J. Biol. Chem. 246, 6064–6071 (1971).PubMedGoogle Scholar
  75. 75.
    M. I. Schimerlik, C. E. Grimshaw, and W. W. Cleland, The use of isotope effects to determine the rate limiting steps for malic enzyme, Biochemistry 16, 571 (1977).PubMedCrossRefGoogle Scholar
  76. 76.
    W. J. Albery and J. R. Knowles, The determination of the rate-limiting step in a proton transfer reaction from the breakdown of the Swain—Schaad relation, J. Am. Chem. Soc. 99, 637–638 (1977).CrossRefGoogle Scholar
  77. 77.
    R. K. Gupta, R. M. Oesterling, and A. S. Mildvan, Dual divalent cation requirement for activation of pyruvate kinase: Essential roles for both enzyme-bound and nucleotide-bound metal ions, Biochemistry 15, 2881–2887 (1976).PubMedCrossRefGoogle Scholar
  78. 78.
    J. F. Biellmann, E. L. O’Connell, and I. A. Rose, Secondary isotope effects in reactions catalyzed by yeast and muscle aldolase, J. Am. Chem. Soc. 91, 6484–6488 (1969).PubMedCrossRefGoogle Scholar
  79. 79.
    E. Grazi, T. Cheng, and B. L. Horecker, The formation of a stable aldolase—dihydroxyacetone phosphate complex, Biochem. Biophys. Res. Commun. 7, 250–253 (1962).PubMedCrossRefGoogle Scholar
  80. 80.
    T. Y. S. Shen and E. W. Westhead, Divalent cation and pH-dependent primary isotope effects in the enolase reaction, Biochemistry 12, 3333–3337 (1973).PubMedCrossRefGoogle Scholar
  81. 81.
    H. R. Mahler and J. ’ Douglas, Mechanisms of enzyme-catalyzed oxidation—reduction reactions I., J. Am. Chem. Soc. 79, 1159–1166 (1957).CrossRefGoogle Scholar
  82. 82.
    J. D. Shore and H. Gutfreund, Transients in the reactions of liver alcohol dehydrogenase, Biochemistry 9, 4655–4659 (1970).PubMedCrossRefGoogle Scholar
  83. 83.
    R. T. Dworschack and B. V. Plapp, pH, isotope and substituent effects on the interconversion of aromatic substrates, catalyzed by hydroxybutyrimidylated liver alcohol dehydrogenase, Biochemistry 16, 2716–2725 (1977).PubMedCrossRefGoogle Scholar
  84. 84.
    G. J. Hardman, L. F. Blackwell, C. R. Boswell, and P. D. Buckley, Substituent effects on the pre-steady state kinetics of oxidation of benzyl alcohols by liver alcohol dehydrogenase, Eur. J. Biochem. 50, 113–118 (1974).PubMedCrossRefGoogle Scholar
  85. 85.
    A. Brown and H. F. Fisher, A comparison of the glutamate dehydrogenase catalyzed oxidation of NADPH by trinitrobenzenesulfonate with the uncatalyzed reaction, J. Am. Chem. Soc. 98, 5682–5688 (1976).PubMedCrossRefGoogle Scholar
  86. 86.
    L. C. Kurz and C. Frieden, Comparison of the structure of enzymatic and non-enzymatic transition states. The reductive desulfonation of 4-X-2,6-dinitrobenzenesulfonates by NADH, Biochemistry 16, 5207–5216 (1977).PubMedCrossRefGoogle Scholar
  87. 87.
    L. do Amaral, M. P. Bastos, H. G. Bull, and E. H. Cordes, Secondary deuterium isotope effects for addition of nitrogen nucleophiles to substituted benzaldehydes, J. Am. Chem. Soc. 95, 7369–7374 (1973).CrossRefGoogle Scholar
  88. 88.
    J. P. Klinman, Acid—base catalysis in the yeast alcohol dehydrogenase reaction, J. Biol. Chem. 250, 2569–2573 (1974).Google Scholar
  89. 89.
    W. P. Jencks, General acid—base catalysis of complex reactions in water, Chem. Rev. 72, 705–718 (1972).CrossRefGoogle Scholar
  90. 90.
    R. Stewart, A. L. Gatzke, M. Macke, and K. Yates, Deuterium isotope effects in organic cations, Chem. Ind. 1959, 331–332.Google Scholar
  91. 91.
    P. Ballinger and F. A. Long, Acid ionization constants of alcohols. I. Trifluoroethanol in the solvents H2O and D20, J. Am. Chem. Soc. 81, 1050–1053 (1959).CrossRefGoogle Scholar
  92. 92.
    J. P.Klinman, K. Welsh, and D. J. Creighton, in: Solvent Isotope Effects in the Yeast Alcohol Dehydrogenase Reaction in Alcohol and Aldehyde Metabolizing Systems (R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance, eds.), Vol. II, Academic Press, New York, in press.Google Scholar
  93. 93.
    B. L. Vallee and F. L. Hock, Zinc, a component of yeast alcohol dehydrogenase. Proc. Nat. Acad. Sci. USA 41, 327–338 (1955).PubMedCrossRefGoogle Scholar
  94. 94.
    C. Veillon and A. J. Sytkowski, The intrinsic zinc atoms of yeast alcohol dehydrogenase, Biochem. Biophys. Res. Commun. 67, 1494–1500 (1976).CrossRefGoogle Scholar
  95. 95.
    J. P. Klinman and K. Welsh, The zinc content of yeast alcohol dehydrogenase, Biochem. Biophys. Res. Commun. 70, 878–884 (1976).PubMedCrossRefGoogle Scholar
  96. 96.
    J. J. Steffens and D. M. Chipman, Reactions of dihydronicotinamides. I. Reduction of trifluoroacetophenone by 1-substituted dihydronicotinamides, J. Am. Chem. Soc. 93, 66946696 (1971).Google Scholar
  97. 97.
    D. J. Creighton, J. Hajdu, G. Mooser, and D. S. Sigman, Model dehydrogenase reactions. Reduction of N-methylacridinium ion by reduced nicotinamide adenine dinucleotide and its derivatives, J. Am. Chem. Soc. 95, 6855–6857 (1973).PubMedCrossRefGoogle Scholar
  98. 98.
    R. F. Williams, S. Shinkai, and T. C. Bruice, Radical mechanism for 1.5-dihydroflavin reduction of carbonyl compounds, Proc. Nat. Acad. Sci. USA 72, 1763–1767 (1975).PubMedCrossRefGoogle Scholar
  99. 99.
    H. Sund and H. Theorell, in: The Enzymes (P. D. Boyer, H. Lardy, and K. Myrback, eds.), Vol. VII, pp. 25–83, Academic Press, New York (1963).Google Scholar
  100. 100.
    J. W. Jacobs, J. T. McFarland, I. Wainer, D. Jeanmaier, C. Ham, K. Hamm, M. Wnuk, and M. Lam, Electronic substituent effects during liver alcohol dehydrogenase catalyzed reduction of aromatic alcohols, Biochemistry 13, 60–64 (1974).PubMedCrossRefGoogle Scholar
  101. 101.
    B. V. Plapp, R. L. Brooks, and J. D. Shore, Horse liver alcohol dehydrogenase, amino groups and rate-limiting steps in catalysis, J. Biol. Chem. 248, 3470–3475 (1973).PubMedGoogle Scholar
  102. 102.
    J. McFarland, personal communication.Google Scholar
  103. 103.
    C. I. Branden, H. Jornvall, H. Eklund, and B. Furugren, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. XI, pp. 104–190, Academic Press, New York (1975).Google Scholar
  104. 104.
    H. Eklund, B. Nordstrom, E. Zeppezauer, G. Soderland, I. Ohlsson, T. Boiwe, B. O. Soderberg, O. Tapia, C. J. Branden, and A. Akeson, Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 A resolution, J. Mol. Biol. 102, 27–59 (1976).PubMedCrossRefGoogle Scholar
  105. 105.
    D. L. Sloan, M. M. Young, and A. S. Mildvan, NMR studies of substrate interaction with cobalt substituted alcohol dehydrogenase from liver, Biochemistry 14, 1998–2008 (1975).PubMedCrossRefGoogle Scholar
  106. 106.
    D. J. Bates, B. R. Golden, and C. Frieden, A new reaction of glutamate dehydrogenase: The enzyme-catalyzed formation of trinitrobenzene from TNBS in the presence of reduced coenzyme, Biochem. Biophys. Res. Commun. 39, 502–507 (1970).PubMedCrossRefGoogle Scholar
  107. 107.
    L. C. Kurz and C. Frieden, A model dehydrogenase reaction. Charge distribution in the transition state, J. Am. Chem. Soc. 97, 677–679 (1975).CrossRefGoogle Scholar
  108. 108.
    C. G. Swain, R. A. Wiles, and R. F. W. Bader, Use of substituent effects on isotope effects to distinguish between proton and hydride transfers. Part I. Mechanism of oxidation of alcohols by bromine in water, J. Am. Chem. Soc. 83, 1945–1950 (1961).CrossRefGoogle Scholar
  109. 109.
    I. A. Rose, Mechanism of the aldose-ketose isomerase reactions, Adv. Enzymol. Relat. Areas Mol. Biol. 43, 491–517 (1976).Google Scholar
  110. 110.
    J. M. Herlihy, S. G. Maister, W. J. Albery, and J. R. Knowles, Energetics of triophosphate isomerase: The fate of the l(R)-3H label of tritiated dehydroxyacetone phosphate in the isomerase reaction, Biochemistry 15, 5601–5607 (1976).PubMedCrossRefGoogle Scholar
  111. 111.
    S. G. Maister, C. P. Pett, J. W. Albery, and J. R. Knowles, Energetics of triosephosphate isomerase: The appearance of solvent tritium in substrate dihydroxyacetone phosphate and in product, Biochemistry 15, 5607–5612 (1976).PubMedCrossRefGoogle Scholar
  112. 112.
    S. J. Fletcher, J. M. Herlihy, W. J. Albery, and J. R. Knowles, Energetics of triosephosphate isomerase: The appearance of solvent tritium in substrate glyceraldehyde 3-phosphate and in product, Biochemistry 15, 5612–5617 (1976).PubMedCrossRefGoogle Scholar
  113. 113.
    P. F. Leadlay, W. J. Albery, and J. R. Knowles, Energetics of triosphosphate isomerase: Deuterium isotope effects in the enzyme-catalyzed reaction, Biochemistry 15, 5617–5620 (1976).PubMedCrossRefGoogle Scholar
  114. 114.
    W. J. Albery and J. R. Knowles, Free-energy profile for the reaction catalyzed by triose-phosphate isomerase, Biochemistry 15, 5627–5631 (1976).PubMedCrossRefGoogle Scholar
  115. 115.
    A. Hall and J. R. Knowles, The uncatalyzed rates of enolization of dihydroxyacetone phosphate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst, Biochemistry 14, 4348–4352 (1975).PubMedCrossRefGoogle Scholar
  116. 116.
    R. Wolfenden, Transition state analogues for enzyme catalysis, Nature (London) 223, 704–705 (1969).CrossRefGoogle Scholar
  117. 117.
    S. J. Reynolds, D. W. Yates, and C. I. Pogson, Dihydroxyacetone phosphate: Its structure and reactivity with a-glycerophosphate dehydrogenase, aldolase and triose phosphate isomerase and some possible metabolic implications, Biochem. J. 122, 285–297 (1971).PubMedGoogle Scholar
  118. 118.
    W. W. Cleland, Determining the chemical mechanisms of enzyme catalyzed reactions by kinetic studies, Adv. Enzymol. Relat. Areas Mol. Biol. 45, 273–387 (1977).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Judith P. Klinman
    • 1
  1. 1.The Institute for Cancer ResearchFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations