Quantum-Mechanical Approaches to the Study of Enzymic Transition States and Reaction Paths

  • Gerald M. Maggiora
  • Ralph E. Christoffersen


Over the last 30 years, transition-state theory has provided a suitable theoretical framework for interpreting a wide range of chemical(1) and biological(2) processes. Nevertheless, it is only within the last few years, due in large measure to the approximately parallel and related development of high-speed digital computers and practical quantum-mechanical procedures for studying the geometric and electronic structure of molecules, that the full potential of transition-state theory is beginning to be realized.


Transition State Potential Energy Surface Reaction Path Potential Energy Function Kinetic Isotope Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of rate processes, Mcgraw-Hillm, New York(1941).Google Scholar
  2. 2.
    F. H. Johnson, H. Eyring, and J. Polissar, The Kinetic Basis of Molecular Biology, Wiley, New York (1954).Google Scholar
  3. 3.
    R. D. Levine, Quantum Mechanics of Molecular Rate Processes, Clarendon Press, Oxford (1969).Google Scholar
  4. 4.
    D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).Google Scholar
  5. 5.
    K. J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill, New York (1969).Google Scholar
  6. 6.
    R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, New York (1974).Google Scholar
  7. 7.
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass. (1950).Google Scholar
  8. 8.
    K. Fukui, A formulation of the reaction coordinate, J. Phys. Chem. 74, 4161–4163 (1970).CrossRefGoogle Scholar
  9. 9.
    M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York (1975).CrossRefGoogle Scholar
  10. 10.
    H. Metiu, J. Ross, R. Silbey, and T. F. George, On symmetry properties of reaction coordinates, J. Chem. Phys. 61, 3200–3209 (1974).CrossRefGoogle Scholar
  11. 11.
    R. Fuchs and E. S. Lewis, in Techniques of Chemistry (E. S. Lewis, ed.), Vol. 6, Part 1, Chap. 4, Wiley, New York (1974).Google Scholar
  12. 12.
    H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald, New York (1966).Google Scholar
  13. 13.
    D. L. Bunker, Simple kinetic models from Arrhenius to the computer, Acc. Chem. Res. 7, 195–201 (1974).CrossRefGoogle Scholar
  14. 14.
    H. Eyring and E. M. Eyring, Modem Chemical Kinetics, Van Nostrand Reinhold, New York (1963).Google Scholar
  15. 15.
    K. J. Laidler, Chemical Kinetics, McGraw-Hill, New York (1965).Google Scholar
  16. 16.
    J. O. Hirschfelder, Coordinates which diagonalize the kinetic energy of relative motion, Int. J. Quantum Chem. 3S, 17–31 (1969).CrossRefGoogle Scholar
  17. 17.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, New York (1954).Google Scholar
  18. 18.
    J. W. McIver and A. Komornicki, Structure of transition states of organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method, J. Am. Chem. Soc. 94, 2625–2633 (1972).CrossRefGoogle Scholar
  19. 19.
    M. J. S. Dewar and S. Kirschner, MINDO/2 study of antiaromatic (“forbidden”) electrocyclic processes, J. Am. Chem. Soc. 93, 4291–4292 (1971).CrossRefGoogle Scholar
  20. 20.
    M. J. S. Dewar and S. Kirschner, Classical and non-classical potential surfaces. The signifi- cance of antiaromaticity in transition states, J. Am. Chem. Soc. 93, 4292–4294 (1971).CrossRefGoogle Scholar
  21. 21.
    M. J. S. Dewar and S. Kirschner, Nature of transition states in “forbidden” electrocyclic reactions, J. Am. Chem. Soc. 96, 5244–5246 (1974).CrossRefGoogle Scholar
  22. 22.
    W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York (1969).Google Scholar
  23. 23.
    M. L. Bender, Mechanisms of Homogeneous Catalysis from Protons to Proteins, Wiley, New York (1971).Google Scholar
  24. 24.
    I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern Engineering, McGraw-Hill, New York (1958).Google Scholar
  25. 25.
    E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1955).Google Scholar
  26. 26.
    F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Addison-Wesley, Reading, Mass. (1969).Google Scholar
  27. 27.
    R. E. Stanton and J. W. McIver, Group theoretical selection rules for the transition states of chemical reactions, J. Am. Chem. Soc. 97, 3632–3646 (1975).CrossRefGoogle Scholar
  28. 28.
    J. N. Murrell and K. J. Laidler, Symmetries of activated complexes, Trans. Faraday Soc. 64, 371–377 (1968).CrossRefGoogle Scholar
  29. 29.
    M. J. S. Dewar and S. Kirschner, MINDO/3 study of the thermal conversion of cyclobutene to 1,3-butadiene, J. Am. Chem. Soc. 96, 6809–6810 (1974).CrossRefGoogle Scholar
  30. 30.
    D. Poppinger, On the calculation of transition states, J. Am. Chem. Soc. 35, 550–554 (1975).Google Scholar
  31. 31.
    H. Eyring and S. H. Lin, in: Physical Chemistry: An Advanced Treatise (H. Eyring, ed.), Vol. 6, Part A, Chap. 3, Academic Press, New York (1975).Google Scholar
  32. 32.
    G. G. Balint-Kurti, in: Molecular Scattering ( K. P. Lawley, ed.), pp. 137–183, Wiley, London (1975).Google Scholar
  33. 33.
    P. O’D. Offenhartz, Atomic and Molecular Orbital Theory, McGraw-Hill, New York (1969).Google Scholar
  34. 34.
    H. F. Schaefer III, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Mass. (1972).Google Scholar
  35. 35.
    A. C. Wahl, Recent progress beyond the Hartree-Fock method for diatomic molecules: The method of optimized valence configurations, Mt. J. Quantum Chem. ls, 123–152 (1967).Google Scholar
  36. 36.
    D. B. Cook, Ab Initio Valence Calculations in ChemistryWiley, New York (1974).Google Scholar
  37. 37.
    S. Huzinaga, Gaussian-type functions for polyatomic systems. I, J. Chem. Phys. 42, 12931302 (1965).Google Scholar
  38. 38.
    E. Clementi and D. R. Davis, Electronic structure of large molecular systems, J. Comput. Phys. 1, 223–244 (1966).Google Scholar
  39. 39.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51. 2657–2664 (1969).CrossRefGoogle Scholar
  40. 40.
    J. L. Whitten, Gaussian lobe function expansions of Hartree-Fock solutions for first-row atoms and ethylene, J. Chem. Phys. 44, 359–364 (1966).CrossRefGoogle Scholar
  41. 41.
    G. M. Maggiora and R. E. Christoffersen, Ah Initio calculations on large molecules using molecular fragments. Generalization and characteristics of floating spherical Gaussian basis sets, J. Am. Chem. Soc. 98, 8325–8332 (1976).Google Scholar
  42. 42.
    R. E. Christoffersen, D. Spangler, G. G. Hall, and G. M. Maggiora, Ab initio calculations on large molecules using molecular fragments. Evaluation and extension of initial procedures, J. Am. Chem. Soc. 95, 8526–8536 (1973).CrossRefGoogle Scholar
  43. 43.
    A. Dedieu and A. Veillard, Ab initio calculation of the activation energy for an SN2 reaction, Chem. Phys. Lett. 5, 328–330 (1970).CrossRefGoogle Scholar
  44. 44.
    P. Baybutt, The molecular orbital description of SN2 reactions at silicon centers, Mol. Phys. 29, 389–403 (1975).CrossRefGoogle Scholar
  45. 45.
    G. Alagona, E. Scrocco, and J. Tomasi, An ab initio study of the amidic bond cleavage by OH-in formamide, J. Am. Chem. Soc. 97, 6976–6983 (1975).Google Scholar
  46. 46.
    H. Bürgi, J. D. Dunitz, J. M. Lehn, and G. Wipff, Stereóchemistry of reaction paths at carbonyl centers, Tetrahedron 30, 1563–1572 (1974).CrossRefGoogle Scholar
  47. 47.
    G. M. Maggiora and R. L. Schowen, in: A Survey of Bioorganic Chemistry (E. E. van Tamelen, ed.), Vol. I, pp. 173–229, Wiley, New York (1977).Google Scholar
  48. 48.
    L. C. Snyder and H. Basch, Molecular Wavefunctions and Properties, Wiley, New York (1972).Google Scholar
  49. 49.
    K. Jug, On the development of semi-empirical methods in the MO formalism, Theor. Chim. Acta 14, 91–135 (1969).Google Scholar
  50. 50.
    R. Hoffman, An extended Hückel theory. I. Hydrocarbons, J. Chem. Phys. 39, 1397–1412 (1963).CrossRefGoogle Scholar
  51. 51.
    L. C. Cusachs and J. W. Reynolds, Selection of molecular matrix elements from atomic data, J. Chem. Phys. 43, S160 - S164 (1965).CrossRefGoogle Scholar
  52. 52.
    R. Rein, N. Fukuda, H. Win, G. A. Clarke, and F. E. Harris, Iterated extended Hückel theory, J. Chem. Phys. 45, 4743–4744 (1966).CrossRefGoogle Scholar
  53. 53.
    L. C. Allen, in: Sigma Molecular Orbital Theory ( O. Sinanoglu and K. B. Wiberg, eds.), pp. 227–248, Yale University Press, New Haven, Conn. (1970).Google Scholar
  54. 54.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
  55. 55.
    J. N. Murrell and J. A. Harget, Semi-Empirical Self-Consistent-Field Molecular Orbital Theory of Molecules, Wiley, New York (1972).Google Scholar
  56. 56.
    J. A. Pople, D. P. Santry, and G. A. Segal, Approximate self-consistent molecular orbital theory. I. Invariant procedures, J. Chem. Phys. 43, 5129–5135 (1965).Google Scholar
  57. 57.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, Approximate self-consistent molecular orbital theory. V. Intermediate neglect of differential overlap, J. Chem. Phys. 47, 2026–2033 (1967).CrossRefGoogle Scholar
  58. 58.
    T. A. Halgren and W. N. Lipscomb, Self-consistent-field wavefunctions for complex molecules. The approximation of partial retention of diatomic differential overlap, J. Chem. Phys. 58, 1569–1591 (1973).CrossRefGoogle Scholar
  59. 59.
    R.C. Bingham, M. J. S. Dewar, and D. H. Lo, Ground states of molecules. XXVI. MIN DO/3 calculations for hydrocarbons, for CHON species, and for compounds containing third row elements, J. Am. Chem. Soc. 97, 1294–1318 (1975).Google Scholar
  60. 60.
    S. Diner, J. P. Malrieu, and P. Claverie, Localized bond orbitals and the correlation problem. I. The perturbation calculation of the ground state energy, Theor. Chim. Acta 13, 1–17 (1969).Google Scholar
  61. 61.
    F. L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York (1968).Google Scholar
  62. 62.
    D. Perahia and A. Pullman, Success of the PCILO method and failure of the CNDO/2 method for predicting conformations in some conjugated systems, Chem. Phys. Lett. 19, 73–75 (1973).CrossRefGoogle Scholar
  63. 63.
    J. Langlet and H. van der Meer, Calculation of molecular geometry with the PCILO method, Theor. Chim. Acta 21, 410–412 (1971).Google Scholar
  64. 64.
    R. E. Dickerson and I. Geis, The Structure and Action of Proteins, Harper & Row, New York (1969).Google Scholar
  65. 65.
    R. Henderson and J. H. Wang, Catalytic Configurations, Ann. Rev. Biophys. Bioeng. 1, 1–26 (1972).CrossRefGoogle Scholar
  66. 66.
    T. H. Fife, Physical organic model systems and the problem of enzymatic catalysis, Adv. Phys. Org. Chem. 11, 1–122 (1975).CrossRefGoogle Scholar
  67. 67.
    Y. Iwakura, K. Uno, F. Toda, S. Onozuka, K. Hattori, and M. L. Bender, The stereochemically correct catalytic site on cyclodextrin resulting in a better enzyme model, J. Am. Chem. Soc. 97, 4432–4434 (1975).PubMedCrossRefGoogle Scholar
  68. 68.
    W. A. Van Hook, in: Isotope Effects in Chemical Reactions ( C. J. Collins and N. S. Bowman, eds.), pp. 1–89, Van Nostrand Reinhold, New York (1970).Google Scholar
  69. 69.
    E. K. Thornton and E. R. Thornton, in: Isotope Effects in Chemical Reactions (C. J. Collins and N. S. Bowman, eds.), pp. 213–285, Van Nostrand Reinhold, New York (1970).Google Scholar
  70. 70.
    P. E. Phillipson, On the possible importance of relaxation processes in enzyme catalysis, J. Mol. Biol. 31, 319–321 (1968).Google Scholar
  71. 71.
    M. V. Vol’kenshtein, Enzyme Physics, Plenum Press, New York (1969).Google Scholar
  72. 72.
    B. R. Gelin and M. Karplus, Side chain torsional potentials and motion of amino acids in proteins: Bovine pancreatic trypsin inhibitor, Proc. Nat. Acad. Sci. USA 72, 2002–2006 (1975).PubMedCrossRefGoogle Scholar
  73. 73.
    A. J. Hopfinger, Conformational Properties of Macromolecules, Academic Press, New York (1973).Google Scholar
  74. 74.
    S. Scheiner, D. A. Kleier, and W. N. Lipscomb, Molecular orbital studies of enzyme activity: I: Charge relay system and tetrahedral intermediate in acylation of serine proteinases, Proc. Nat. Acad. Sci. USA 72, 2606–2610 (1975).PubMedCrossRefGoogle Scholar
  75. 75.
    S. Scheiner and W. N. Lipscomb, Molecular orbital studies of enzyme activity: Catalytic mechanism of serine proteinases, Proc. Nat. Acad. Sci. USA 73, 432–436 (1976).PubMedCrossRefGoogle Scholar
  76. 76.
    L. Polgar and B. Asbóth, On the stereochemistry of catalysis by serine proteases, J. Theor. Biol. 46, 543–558 (1974).PubMedCrossRefGoogle Scholar
  77. 77.
    Papers on the structure and function of proteins at the three-dimensional level, Cold Spring Harbor Symp. Quant. Biol. 36, 63 - I50 (1972).CrossRefGoogle Scholar
  78. 78.
    D. M. Blow, J. J. Birktoft, and B. S. Hartley, Role of a buried acid group in the mechanism of action of chymotrypsin, Nature (London) 221, 337–340 (1969).CrossRefGoogle Scholar
  79. 79.
    A. Ruhlmann, D. Kukla, P. Schwager, K. Bartels, and R. Huber, Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor, J. Mol. Biol. 77, 417–436 (1973).PubMedCrossRefGoogle Scholar
  80. 80.
    M. L. Bender and J. V. Kilheffer, Chymotrypsins, CRC Crit. Rev. Biochem. 1, 149–199 (1973).PubMedCrossRefGoogle Scholar
  81. 81.
    H. Umeyama, A. Imamura, C. Nagata, and M. Hanano, A molecular orbital study on the enzymic reaction mechanism of a-chymotrypsin, J. Theor. Biol. 41, 485–502 (1973).PubMedCrossRefGoogle Scholar
  82. 82.
    G. H. Loew and D. D. Thomas, Molecular orbital calculations of the catalytic effect of lysozyme, J. Theor. Biol. 36, 89–104 (1972).PubMedCrossRefGoogle Scholar
  83. 83.
    T. C. Bruice, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. I1, pp. 217–279, Academic Press, New York (1970).Google Scholar
  84. 84.
    D. E. Koshland, K. W. Carraway, G. A. Dafforn, J. D. Gass, and D. R. Storm, The importance of orientation factors in enzymatic reactions, Cold Spring Harbor Symp. Quant. Biol. 36, 13–20 (1971).CrossRefGoogle Scholar
  85. 85.
    T. C. Bruice, Views on approximation, orbital steering, and enzymatic model reactions, Cold Spring Harbor Symp. Quant. Biol. 36, 21–27 (1971).CrossRefGoogle Scholar
  86. 86.
    D. M. Chipman and N. Sharon, Mechanism of lysozyme action, Science 165, 464–465 (1969).CrossRefGoogle Scholar
  87. 87.
    C. Delisi and D. M. Crothers, The contribution of proximity and orientation to catalytic reaction rates, Biopolymers 12, 1689–1704 (1973).CrossRefGoogle Scholar
  88. 88.
    W. P. Jencks and M. I. Page, “Orbital steering,” entropy, and rate accelerations, Biochem. Biophys. Res. Commun. 57, 887–892 (1974).PubMedCrossRefGoogle Scholar
  89. 89.
    A. R. Fersht, Catalysis, binding, and enzyme-substrate complementarity, Proc. Roy. Soc. London Ser. B 187, 397–407 (1974).CrossRefGoogle Scholar
  90. 90.
    P. K. Warme and H. A. Scheraga, Refinement of the X-ray structure of lysozyme by complete energy minimization, Biochemistry 13, 757–767 (1974).PubMedCrossRefGoogle Scholar
  91. 91.
    M. Levitt, Energy refinement of hen egg-white lysozyme, J. Mol. Biol. 82, 393–420 (1974).PubMedCrossRefGoogle Scholar
  92. 92.
    B. S. Hudson, in: Neutron, X-Ray, and Laser Spectroscopy in Biology and Chemistry ( S. Chen and S. Yip, eds.), pp. 119–144, Academic Press, New York (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Gerald M. Maggiora
    • 1
  • Ralph E. Christoffersen
    • 1
  1. 1.Departments of Biochemistry and ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations