Advertisement

The Mechanism of Phosphoryl Transfer

  • S. J. Benkovic
  • K. J. Schray

Abstract

Our intent in this chapter is to present an abbreviated but inclusive description of the probable transition states involved in phosphoryl-transfer reactions as elucidated by physical organic studies. A number of critical, extensive reviews on particular aspects of this topic have recently appeared.(1–9) Probable modes of catalysis will be delineated particularly in relation to their anticipated involvement in biological phosphoryl transfer.

Keywords

Alkaline Hydrolysis Phosphate Ester Phosphonium Salt Acetyl Phosphate Phenyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. C. Bruice and S. J. Benkovic, Bioorganic Mechanisms, Vol. 2, Benjamin, Reading, Mass. (1966), pp. 1–176.Google Scholar
  2. 2.
    S. J. Benkovic and K. J. Schray, in: The Enzymes (P. D. Boyer, ed.), Vol. 8, pp. 201–238, Academic Press, New York (1973).Google Scholar
  3. 3.
    A. J. Kirby and S. G. Warren, The Organic Chemistry of Phosphorus, Elsevier, Amsterdam (1967).Google Scholar
  4. 4.
    S. J. Benkovic, in: Comprehensive Chemical Kinetics (C. H. Bamford and C. F. Tipper, eds.), Vol. 10, pp. 1–51, American Elsevier, New York (1972).Google Scholar
  5. 5.
    F. H. Westheimer, Pseudorotation in the hydrolysis of phosphate esters, Acc. Chem. Res. 1, 70–78 (1968).CrossRefGoogle Scholar
  6. 6.
    W. E. McEwen, in: Topics in Phosphorus Chemistry (M. Grayson and E. J. Griffith, eds.), Vol. 2, pp. 1–41, Wiley, New York (1965).Google Scholar
  7. 7.
    R. F. Hudson and C. Brown, Reactivity of heterocyclic phosphorus compounds, Ace. Chem. Res. 5, 204–211 (1972).CrossRefGoogle Scholar
  8. 8.
    K. Mislow, Role of pseudorotation in the stereochemistry of nucleophilic displacement reactions, Acc. Chem. Res. 3, 321–331 (1970).CrossRefGoogle Scholar
  9. 9.
    P. Gillespie, F. Ramirez, I. Ugi, and D. Marquarding, Displacement reactions of phosphorus (V) compounds and their pentacovalent intermediates, Angew. Chem. Int. Ed. Engl. 12 (2), 91–119 (1973).CrossRefGoogle Scholar
  10. 10.
    C. A. Bunton, D. R. Llewellyn, K. G. Oldham, and C. A. Vernon, Reactions of organic phosphates. L Hydrolysis of methyl dihydrogen phosphate, J. Chem. Soc. 1958, 3574–3587.Google Scholar
  11. 11.
    C. A. Bunton, E. J. Fendler, E. Humeres, and K. Yang, The hydrolysis of some monophenyl phosphates, J. Am. Chem. 32, 2806–2811 (1967).Google Scholar
  12. 12.
    G. Di Sabato and W. P. Jencks, Mechanism and catalysis of reactions of acyl phosphates. II. Hydrolysis, J. Am. Chem. Soc. 83, 4400–4405 (1961).CrossRefGoogle Scholar
  13. 13.
    D. C. Dittmer and O. B. Ramsey, Reactivity of thiophosphates. I. Hydrolysis of phosphorothioic acid, J. Am. Chem. 28, 1268–1272 (1963).Google Scholar
  14. 14.
    S. Milstien and T. H. Fife, The hydrolysis of S-aryl phosphorothioates, J. Am. Chem. Soc. 89, 5820–5826 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    S. J. Benkovic and E. J. Sampson, Structure-reactivity correlation for hydrolysis of phosphoramidate monoanions, J. Am. Chem. Soc. 93, 4009–4016 (1971).CrossRefGoogle Scholar
  16. 16.
    J. D. Chanley and E. Feageson, Hydrolysis of phosphoramides, J. Am. Chem. Soc. 80, 2686–2691 (1958).CrossRefGoogle Scholar
  17. 17.
    L. L. Schaleger and F. A. Long, in: Advances in Physical Organic Chemistry (V. Gold, ed.), Vol. 1, pp. 1–33, Academic Press, New York (1963).Google Scholar
  18. 18.
    J. D. Chantey and E. Feageson, A study on the hydrolysis of phosphoramides. II. Solvolysis of phosphoramidic acid and comparison with phosphate esters, J. Am. Chem. Soc. 85, 1181–1190 (1963).CrossRefGoogle Scholar
  19. 19.
    S. J. Benkovic and P. A. Benkovic, Hydrolytic mechanisms of phosphoramidates of aromatic amino acids, J. Am. Chem. Soc. 89, 4714–4722 (1967).PubMedCrossRefGoogle Scholar
  20. 20.
    C. H. Clapp and F. H. Westheimer, Monomeric methyl metaphosphate, J. Am. Chem. Soc. 96, 6710–6714 (1974).CrossRefGoogle Scholar
  21. 21.
    A. J. Kirby and A. G. Varvoglis, The reactivity of phosphate esters. Monoester hydrolysis, J. Am. Chem. Soc. 89, 414–423 (1967).CrossRefGoogle Scholar
  22. 22.
    Y. Murakami and J. Sunamoto, Solvolysis of organic phosphates. Part IX. Structure-reactivity correlations for the hydrolysis of organic orthophosphate monoesters, J. Chem. Soc. Perkin Trans. 2, 1973, 1235–1241.Google Scholar
  23. 23.
    G. W. Allen and P. Haake, Hydrolysis of phosphoroguanidines. A model system for phosphorylation by phosphorocreatine, J. Am. Chem. Soc. 95, 8080–8087 (1973).PubMedCrossRefGoogle Scholar
  24. 24.
    C. A. Bunton and H. Chaimovich, The acid-catalyzed hydrolysis of pyrophosphoric acid, Inorg. Chem. 4, 1763–1766 (1965).CrossRefGoogle Scholar
  25. 25.
    D. Samuel and B. Silver, The existence of the P’P’-diethyl pyrophosphate ion, J. Chem. Soc. 1961, 4321–4324.Google Scholar
  26. 26.
    D. L. Miller and F. H. Westheimer, The hydrolysis of y-phenylpropyl di-and triphosphates, J. Am. Chem. Soc. 88, 1507–1511 (1966).PubMedCrossRefGoogle Scholar
  27. 27.
    D. L. Miller and T. Ukena, PIPI-Diethyl pyrophosphate, J. Am. Chem. Soc. 91, 3050–3053 (1969).CrossRefGoogle Scholar
  28. 28.
    C. A. Bunton, E. J. Fendler, and J. H. Fendler, The hydrolysis of dinitrophenyl phosphates, J. Am. Chem. Soc. 89, 1221–1230 (1967).CrossRefGoogle Scholar
  29. 29.
    D. G. Gorenstein, Oxygen-18 isotope effect in the hydrolysis of 2,4-dinitrophenyl phosphate. A monomeric metaphosphate mechanism, J. Am. Chem. Soc. 94, 2523–2525 (1972).CrossRefGoogle Scholar
  30. 30.
    F. H. Westheimer, Studies of the solvolysis of some phosphate esters, Chem. Soc. Spec. Publ. 8, 1–15 (1957).Google Scholar
  31. 31.
    P. S. Traylor and F. H. Westheimer, Mechanisms in the hydrolysis of phosphorodiamidic chlorides, J. Am. Chem. Soc. 87, 553–559 (1965).CrossRefGoogle Scholar
  32. 32.
    A. Williams and K. T. Douglas, E1cB Mechanisms. 11. Base hydrolysis of substituted phenyl phosphorodiamidate, J. Chem. Soc. Perkin Trans. 2, 1972, 1454–1459.Google Scholar
  33. 33.
    A Williams and K. T. Douglas, E1cB Mechanisms. Part IV. Base hydrolysis of substituted phenyl phosphoro-and phosphorothio-diamidate, J. Chem. Soc. Perkin Trans. 2, 1973, 318–324.Google Scholar
  34. 34.
    A. F. Gerrard and N. K. Hamer, Evidence for a planar intermediate in alkaline solvolysis of methyl N-cyclohexylphosphoramiothioic chlorine, J. Chem. Soc. B 1968, 539–543.Google Scholar
  35. 35.
    J. Rebek and F. Gavina, The three-phase test for reaction intermediates, metaphosphates. J. Am. Chem. Soc. 97, 1591–1592 (1975).CrossRefGoogle Scholar
  36. 36.
    P. Haake and P. S. Ossip, SN1 mechanism in displacement at phosphorus. Solvolysis of phosphinyl chlorides, J. Am. Chem. Soc. 93, 6924–6930 (1971).CrossRefGoogle Scholar
  37. 37.
    P. Haake and D. A. Tyssee, Dissociative displacement at phosphorus by unimolecular cleavage of a P—N bond. Entropy of activation as a criterion of mechanism, Tetrahedron Lett. 40, 3513–3516 (1970).CrossRefGoogle Scholar
  38. 38.
    S. B. Hartley, W. S. Holmes, J. K. Jacques, M. F. Mole, and J. C. McCoupbrey, Thermo-chemical properties of phosphorus compounds, Q. Rev. Chem. Soc. 17, 204–223 (1963).CrossRefGoogle Scholar
  39. 39.
    K. A. R. Mitchell, The use of outer d orbitals in bonding, Chem. Rev. 69, 157–178 (1969).CrossRefGoogle Scholar
  40. 40.
    G. Capozzi and P. Haake, Acid-dependent associative and dissociative mechanisms of displacement at phosphorus, J. Am. Chem. Soc. 94, 3249–3450 (1972).CrossRefGoogle Scholar
  41. 41.
    P. Haake and T. Koizumi, Hydrolysis of phosphinamides and the nature of the P—N bond, Tetrahedron Lett. 55, 4845–4848 (1970).CrossRefGoogle Scholar
  42. 42.
    E. L. Muetterties and R. A. Schuunn, Pentacoordination, Q. Rev. Chem. Soc. 20 (2), 245–299 (1966).CrossRefGoogle Scholar
  43. 43.
    R. Schmutzler, Chemistry and stereochemistry of fluorophosphoranes, Angew. Chem. 77, 530–541 (1965).CrossRefGoogle Scholar
  44. 44.
    R. Luckenbach, Dynamic Stereochemistry of Pentaco-ordinated Phosphorus and Related Elements, Thieme, Stuttgart (1973).Google Scholar
  45. 45.
    W. C. Hamilton, S. J. LaPlaca, F. Ramirez, and C. P. Smith, Crystal and molecular structures of pentacoordinated Group V compounds. I. 2,2,2-Triisopropoxy-4,5-(2’,2“-biphenyleno)-1,3,2-dioxaphospholene, J. Am. Chem. Soc. 89, 2268–2272 (1967).Google Scholar
  46. 46.
    F. Ramirez, Oxyphosphoranes, Acc. Chem. Res. 1, 168–174 (1968).CrossRefGoogle Scholar
  47. 47.
    D. B. Denney and H. M. Relies, Pentaethoxyphosphorus, J. Am. Chem. Soc. 86, 3897–3898 (1964).CrossRefGoogle Scholar
  48. 48.
    D. B. Denney and S. T. D. Gough, Pentaalkoxyphosphoranes, J. Am. Chem. Soc. 87, 138–139 (1965).CrossRefGoogle Scholar
  49. 49.
    F. Ramirez, A. J. Bigler, and C. P. Smith, Pentaphenoxyphosphorane, J. Am. Chem. Soc. 90, 3507–3511 (1968).CrossRefGoogle Scholar
  50. 50.
    R. Hoffmann, J. M. Howell, and E. L. Muetterties, Molecular orbital theory of pentacoordinate phosphorus, J. Am. Chem. Soc. 94, 3047–3058 (1972).CrossRefGoogle Scholar
  51. 51.
    J. A. Howard, D. R. Russell, and S. Trippet, Square pyramidal phosphorus. X-ray analysis of the 1,3,2-dioxaphospholanes from hexafluoroacetone and phosphetans, Chem. Commun. 1973, 856–857.Google Scholar
  52. 52.
    P. Gillespie, P. Hoffman, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E. A. Tsolis, and I. Ugi, Non-rigid Molecular skeletons—Berry pseudorotation and turnstile rotation, Angew. Chem. Int. Ed. Engl. 10 (10), 687 (1971).CrossRefGoogle Scholar
  53. 53.
    G. M. Whitesides and H. L. Mitchell, Pseudorotation in tetrafluorodimethylaminophosphorane, J. Am. Chem. Soc. 91, 5384–5386 (1969).CrossRefGoogle Scholar
  54. 54.
    R. S. Berry, Correlation of rates of intramolecular tunneling processes, with application to some Group V compounds, J. Chem. Phys. 32, 933–938 (1960).CrossRefGoogle Scholar
  55. 55.
    I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie, and F. Ramirez, Berry pseudorotation and turnstile rotation, Acc. Chem. Res. 4, 288–296 (1971).CrossRefGoogle Scholar
  56. 56.
    D. Britton and J. D. Dunitz, Isomerization of pentacoordinated molecules, J. Am. Chem. Soc. 97, 3836–3837 (1975).CrossRefGoogle Scholar
  57. 57.
    A. Strich and A. Veillard, Electronic structure of phosphorus pentafluoride and polytopal rearrangement in phosphoranes, J. Am. Chem. Soc. 95, 5574–5581 (1973).CrossRefGoogle Scholar
  58. 58.
    F. Ramirez and I. Ugi, in: Advances in Physical Organic Chemistry (V. Gold, ed.), Vol. 9, pp. 25–126, Academic Press, New York (1971).Google Scholar
  59. 59.
    R. K. Oram and S. Trippett, Reactions of 1-substituted 2,2,3,4,4-pentamethvinhosohetanes with hexafluoroacetone and the fluorine-19 nuclear magnetic resonance spectra of the resulting 1,3,2-dioxaphospholanes, J. Chem. Soc. Perkin Trans. 12, 1300–1310 (1973).CrossRefGoogle Scholar
  60. 60.
    S. Trippett and P. J. Whittle, Apicophilicity of the benzoyl group in five-coordinate phosphoranes, J. Chem. Soc. Perkin Trans. 13, 1220–1222 (1975).CrossRefGoogle Scholar
  61. 61.
    S. Bone, S. Trippett, and P. J. Whittle, Apicophilicity of thio substituents in trigonal bi-pyramidal phosphoranes, J. Chem. Soc. Perkin Trans. 1 18, 2125–2132 (1974).CrossRefGoogle Scholar
  62. 62.
    K. E. DeBruin, A. G. Padilla, and M. T. Campbell, Alkaline hydrolysis of 1- x -1-Alkoxy2,2,3,4,4-pentamethylphosphetanium salts. Unusual order of ligand kinetic axiophilicities, J. Am. Chem. Soc. 95, 4681–4687 (1973).CrossRefGoogle Scholar
  63. 63.
    P. Haake and F. H. Westheimer, Hydrolysis and exchange in esters of phosphoric acid, J. Am. Chem. Soc. 83, 1102–1109 (1961).CrossRefGoogle Scholar
  64. 64.
    F. Covitz and F. H. Westheimer, The hydrolysis of methyl ethylene phosphate: Steric hindrance in general base catalysis, J. Am. Chem. Soc. 85, 1773–1777 (1963).CrossRefGoogle Scholar
  65. 65.
    J. R. Cox, R. E. Wall, and F. H. Westheimer, Thermochemical demonstration of strain in a cyclic phosphate, Chem. Ind. (London) 1959, 929.Google Scholar
  66. 66.
    E. T. Kaiser, M. Panar, and F. H. Westheimer, The hydrolysis of some cyclic esters of sulfuric acid, J. Am. Chem. Soc. 85, 602–607 (1963).CrossRefGoogle Scholar
  67. 67.
    D. A. Usher, E. A. Dennis, and F. H. Westheimer, Calculation of the bond angles and conformation of methyl ethylene phosphate and related compounds, J. Am. Chem. Soc. 87, 2320–2321 (1965).CrossRefGoogle Scholar
  68. 68.
    M. G. Newton, J. R. Cox, and J. A. Bertrand, The crystal and molecular structure of methyl pinacol phosphate, J. Am. Chem. Soc. 88, 1503–1506 (1966).CrossRefGoogle Scholar
  69. 69.
    D. B. Boyd, Mechanism of hydrolysis of cyclic phosphate esters, J. Am. Chem. Soc. 91, 1200–1205 (1969).CrossRefGoogle Scholar
  70. 70.
    J. M. Lehn and G. Wipff, Stereoelectric effects in phosphoric acid and phosphate esters, Chem. Commun. 1975, 800–802.Google Scholar
  71. 71.
    S. 1. Miller, in: Advances in Physical Organic Chemistry (V. Gold, ed.), Vol. 6, pp. 185–332, Academic Press, New York (1968).Google Scholar
  72. 72.
    E. A. Dennis and F. H. Westheimer, The rates of hydrolysis of esters of cyclic phosphonic acids, J. Am. Chem. Soc. 88, 3431–3432 (1966).PubMedCrossRefGoogle Scholar
  73. 73.
    R. L. Burwell, Jr., and R. G. Pearson, The principle of microscopic reversibility, J. Phys. Chem. 70, 300–304 (1966).CrossRefGoogle Scholar
  74. 74.
    R. Kluger, F. Covitz, E. Dennis, L. D. Williams, and F. H. Westheimer, pH-Product and pH-rate profiles for the hydrolysis of methyl ethylene phosphate. Rate-limiting pseudorotation, J. Am. Chem. Soc. 91, 6066–6072 (1969).CrossRefGoogle Scholar
  75. 75.
    W. P. Jencks and M. Gilchrist, Nonlinear structure-reactivity correlations. The reactivity of nucleophilic reagents toward esters, J. Am. Chem. Soc. 90, 2622–2637 (1968).CrossRefGoogle Scholar
  76. 76.
    W. P. Jencks and M. Gilchrist, Electrophilic catalysis. The hydrolysis of phosphoramidates, J. Am. Chem. Soc. 86, 1410–1417 (1964).CrossRefGoogle Scholar
  77. 77.
    W. P. Jencks and M. Gilchrist, Reaction of nucleophilic reagents with phosphoramidate, J. Am. Chem. Soc. 87, 3199–3209 (1965).CrossRefGoogle Scholar
  78. 78.
    G. W. Jameson and J. M. Lawlor. Aminolysis of N-phosphorylated pyridines, J. Chem. Soc. B 1970, 53–57.Google Scholar
  79. 79.
    R. H. Bromilow, S. A. Khan, and A. J. Kirby, Intramolecular catalysis of phosphate triester hydrolysis-nucleophilic catalysis by neighboring carboxyl group of hydrolysis of dialkyl 2-carboxyphenol phosphate, J. Chem. Soc. B 1971, 1091–1097.Google Scholar
  80. 80.
    G. Di Sabato and W. P. Jencks, Mechanism and catalysis of reactions of acyl phosphates. I. Nucleophilic reactions, J. Am. Chem. Soc. 83, 4393–4400 (1961).CrossRefGoogle Scholar
  81. 81.
    A. J. Kirby and W. P. Jencks, The reactivity of nucleophilic reagents toward the p-nitrophenyl phosphate dianion, J. Am. Chem. Soc. 87, 3209–3216 (1967).CrossRefGoogle Scholar
  82. 82.
    A. J. Kirby and A. G. Varvoglis, The reactivity of phosphate esters: Reaction of monoesters with nucleophiles. Nucleophilicity independent of basicity in a biomolecular substitution reaction, J. Chem. Soc. B 1968, 135–141.Google Scholar
  83. 83.
    A. J. Kirby and M. Younas, Reactivity of phosphate esters. Reactions of diesters with nucleophiles, J. Chem. Soc. B 1970, 1165–1172.Google Scholar
  84. 84.
    H. J. Brass, J. O. Edwards, and M. J. Biallas, Reactions of phosphoric acid esters with nucleophiles. [II. Reactivity of amines toward p-nitrophenyl methyl phosphonate, J. Am. Chem. Soc. 92, 4675–4681 (1970).CrossRefGoogle Scholar
  85. 85.
    S. A. Khan and A. J. Kirby, Reactivity of phosphate esters. Multiple structure reactivity correlations for the reaction of triesters with nucleophiles, J. Chem. Soc. B 1970, 1 172–1 182.Google Scholar
  86. 86.
    R. Swidler, R. E. Plapinger, and G. M. Stein, The kinetics of the reaction of isopropyl methylphosphonofluoridate (sarin) with substituted benzohydroxamic acids, J. Am. Chem. Soc. 81, 3271–3274 (1959).CrossRefGoogle Scholar
  87. 87.
    A. L. Green, G. L. Sainsbury, B. Saville, and M. Stansfield, The reactivity of some active nucleophilic reagents with organophosphorus anticholinesterases, J. Chem. Soc. 1958, 1583–1587.Google Scholar
  88. 88.
    J. Michalski, M. Mikolajczyk, and J. Omelanczuk, Chemical evidence for Walden inversion at the thiophosphoryl center based on the Pishschimuka reaction. Synthesis of optically active N,N-diethylphosphonamidic chloride, Tetrahedron Lett. 32, 3565–3568 (1968).Google Scholar
  89. 89.
    W. B. Farnham, K. Mislow, N. Mandel, and J. Donohue, Stereochemistry of methanolysis of menthyl S-methyl phenylphosphonothioate, Chem. Commun. 3, 120–121 (1972).Google Scholar
  90. 90.
    K. E. DeBruin and J. R. Petersen, Steric and electronic effects on the stereochemistry of the alkaline hydrolysis of acyclic dialkoxyphosphonium salts. Pseudorotation of intermediates in phosphorus ester reactions, J. Am. Chem. 37, 2272–2278 (1972).Google Scholar
  91. 91.
    K. E. DeBruin and D. M. Johnson, Relative energetics of modes for phosphorane formation and decomposition in nucleophilic displacement reactions at a cyclic phosphorus. Alkaline hydrolysis of alkoxy(alkylthio)phosphonium salts. J. Am. Chem. Soc. 95, 4675–4681 (1973).CrossRefGoogle Scholar
  92. 92.
    K. E. DeBruin and K. Mislow, Stereochemistry of the alkaline hydrolysis of dialkoxyphosphonium salts. J. Am. Chem. Soc. 91, 7393–7397 (1969).CrossRefGoogle Scholar
  93. 93.
    N. J. De’ath, K. Ellis, D. J. H. Smith, and S. Trippett, Alkaline hydrolysis of alkoxy(methylthio)phosphonium salts with retention of configuration at phosphorus, Chem. Commun. 1971, 714.Google Scholar
  94. 94.
    T. D. Inch, G. J. Lewis, R. G. Wilkinson, and P. Watts, Differences in mechanisms of nucleophilic substitution at phosphorus in S-alkyl alkylphosphinothioates and S-alkyl phosphorothioates, Chem. Commun. 13, 500–501 (1975).Google Scholar
  95. 95.
    J. M. Harrison, T. D. Inch, and G. J. Lewis, Use of carbohydrate derivatives for studies of phosphorus stereochemistry. 5. Preparation of some reactions of tetrahydro-1,3,2-oxazaphosphorine-2-ones and tetrahydro-1,3,2-oxazaphosphorine-2-thiones, J. Chem. Soc. Perkin Trans. 1, 1975, 1892–1902.CrossRefGoogle Scholar
  96. 96.
    J. M. Harrison, T. D. Inch, and G. L. Lewis, Use of carbohydrate derivatives for studies of phosphorus stereochemistry. 4. Ring opening of 1,3,2-dioxaphosphorinan-2-ones and related compounds with Grignard reagents and with sodium methoxide, J. Chem. Soc. Perkin Trans. 1, 1974, 1058–1068.Google Scholar
  97. 97.
    W. S. Wadsworth, Jr., S. Larsen, and H. L. Horten, Nucleophilic substitution at phosphorus, J. Am. Chem. 38, 256–263 (1973).Google Scholar
  98. 98.
    W. S. Wadsworth, Jr., and Y. Tsay, Nucleophilic substitution at phosphorus. Phosphorothioates, J. Am. Chem. 39, 984–989 (1974).Google Scholar
  99. 99.
    K. E. DeBruin and D. M. Johnson, Preferential mode for nucleophilic attack by methoxide ion on 0,S-dimethyl phenylphosphonothiolate. A contrasting behavior to reactions on analogous phosphonium salts, J. Am. Chem. Soc. 95, 7921–7923 (1973).CrossRefGoogle Scholar
  100. 100.
    R. D. Cook, C. E. Diebert, W. Schwarz, P. C. Turley, and P. Haake, Mechanism of nucleophilic displacement at phosphorus in the alkaline hydrolysis of phosphinate esters, J. Am. Chem. Soc. 95, 8088–8096 (1973).CrossRefGoogle Scholar
  101. 101.
    T. Koizumi and P. Haake, Acid-catalyzed and alkaline hydrolysis of phosphinamides. The lability of phosphorus-nitrogen bonds in acid and the mechanisms of reaction, J. Am. Chem. Soc. 95, 8073–8079 (1973).CrossRefGoogle Scholar
  102. 102.
    H. J. Brass and M. L. Bender, Reactions of general bases and nucleophiles with bis(pnitrophenyl)methylphosphonate, J. Am. Chem. Soc. 94, 7421–7428 (1972).CrossRefGoogle Scholar
  103. 103.
    A. Williams and R. A. Naylor, Hydrolysis of phosphonic esters. General-base catalysis by imidazole, J. Chem. Soc. B 1971, 1967–1972.Google Scholar
  104. 104.
    R. L. Collin, The electronic structure of phosphate esters, J. Am. Chem. Soc. 88, 3281–3287 (1966).PubMedCrossRefGoogle Scholar
  105. 105.
    J. A. A. Ketelaar, H. R. Gersmann, and K. Koopmans, The rate of hydrolysis of some pnitrophenol esters of ortho-phosphoric and thio-phosphoric acids, Recl. Tray. Chim. Pays-Bas 71, 1253–1258 (1952).CrossRefGoogle Scholar
  106. 106.
    R. Breslow and I. Katz, Relative reactivities of p-nitrophenyl phosphate and phosphorothioate toward alkaline phosphatase and in aqueous hydrolysis, J. Am. Chem. Soc. 90, 7376–7377 (1968).CrossRefGoogle Scholar
  107. 107.
    V. E. Bel’skii, M. M. Bezzubova, M. V. Efremova, and I. Nuretdinov, Kinetics of the alkaline hydrolysis of some organoselenophosphorus compounds, Zh. Obshch. Khim. 43, 1255–1257 (1973).Google Scholar
  108. 108.
    W. Saenger and F. Eckstein, Stereochemistry of a substrate for pancreatic ribonuclease. Crystal and molecular structure of the triethylammonium salt of uridine 2’,3’-O,O-cyclophosphorothioate, J. Am. Chem. Soc. 92, 4712–4718 (1970).CrossRefGoogle Scholar
  109. 109.
    M. L. Bender and J. M. Lawlor, Isotopic and kinetic studies of the mechanism of hydrolysis of salicyl phosphate. Intramolecular general acid catalysis, J. Am. Chem. Soc. 85, 3010–3017 (1963).CrossRefGoogle Scholar
  110. 110.
    R. H. Bromilow and A. J. Kirby, Intramolecular general acid catalysis of phosphate mono-ester hydrolysis. Hydrolysis of salicyl phosphate, J. Chem. Soc. Perkin Trans. 2, 1972, 149–155.Google Scholar
  111. 111.
    S. J. Benkovic and K. J. Schray, Kinetics and mechanisms of phosphoenolpyruvate hydrolysis, Biochemistry 7, 4090–4096 (1968).PubMedCrossRefGoogle Scholar
  112. 112.
    K. J. Schray and S. J. Benkovic, Mechanisms of hydrolysis of phosphate ester derivatives of phosphoenolpyruvic acid, J. Am. Chem. Soc. 93, 2522–2529 (1971).PubMedCrossRefGoogle Scholar
  113. 113.
    S. A. Khan, A. J. Kirby, M. Wakselman, D. P. Horning, and J. M. Lawlor, Intramolecular catalysis of phosphate diester hydrolysis. Nucleophilic catalysis by the neighboring carboxy group of the hydrolysis of aryl 2-carboxyphenyl phosphates, J. Chem. Soc. B 1970, 1182–1187.Google Scholar
  114. 114.
    J. Steffens, E. Sampson, I. Siewers, and S. J. Benkovic, Effects of divalent metal ions on the intramolecular nucleophilic catalysis of phosphate diester hydrolysis, J. Am. Chem. Soc. 95, 936–938 (1973).CrossRefGoogle Scholar
  115. 115.
    R. H. Bromilow, S. A. Khan, and A. J. Kirby, Intramolecular catalysis of phosphate triester hydrolysis. Nucleophilic catalysis by the neighboring carboxy group of the hydrolysis of diaryl 2-carboxyphenyl phosphates, J. Chem. Soc. Perkin Trans. 2, 1972, 911–918.Google Scholar
  116. 116.
    J. J. Steffens, I. J. Siewers, and S. J. Benkovic, Catalysis of phosphoryl group transfer. The role of divalent metal ions in the hydrolysis of lactic acid O-phenyl phosphate and salicylic acid O-aryl phosphates, Biochemistry 14, 2431–2440 (1975).Google Scholar
  117. 117.
    G. M. Blackburn and M. J. Brown, The mechanism of hydrolysis of diethyl 2-carboxylphenylphosphates, J. Am. Chem. Soc. 96, 6492–6498 (1974).CrossRefGoogle Scholar
  118. 118.
    S. S. Simons, Jr., Carboxyl-assisted hydrolysis. Synthesis and hydrolysis of diphenyl cis-2(3-carboxy) norbornyl phosphates, J. Am. Chem. Soc. 96, 6492–6498 (1974).CrossRefGoogle Scholar
  119. 119.
    D. A. Usher, D. I. Richardson, Jr., and D. G. Oakenfull, Models of ribonuclease action. Il. Specific acid, specific base, and neutral pathways for hydrolysis of a nucleotide diester analog, J. Am. Chem. Soc. 92, 4699–4712 (1970).PubMedCrossRefGoogle Scholar
  120. 120.
    R. Kluger and J. L. W. Chen, Phosphorylation of amides. Evidence for participation in catalysis, J. Am. Chem. Soc. 95, 2362–2364 (1973).CrossRefGoogle Scholar
  121. 121.
    W. P. Jencks, in: Advances in Enzymology (A. Meister, ed.), Vol. 43, pp. 219–410, WileyInterscience, New York (1976).Google Scholar
  122. 122.
    F. Ramirez, J. F. Marecek, and H. Okazaki, One-flask synthesis of unsymmetrical phosphodiesters. Selective amine catalysis of phosphorylation of primary vs. secondary alcohols, J. Am. Chem. Soc. 97, 7181–7182 (1975).CrossRefGoogle Scholar
  123. 123.
    G. J. Lloyd and B. S. Cooperman, Nucleophilic attack by zinc(II)-pyridine-2-carboxaldoxime anion on phosphorylimidazole. A model for enzymic phosphate transfer, J. Am. Chem. Soc. 93, 4883–4889 (1971).PubMedCrossRefGoogle Scholar
  124. 124.
    C. Hsu and B. S. Cooperman, personal communication.Google Scholar
  125. 125.
    S. J. Benkovic and L. K. Dunikoski, Jr., Unusual rate enhancement in metal ion catalysis of phosphate transfer, J. Am. Chem. Soc. 93, 1526–1527 (1971).CrossRefGoogle Scholar
  126. 126.
    Y. Murakami and M. Takagi, Solvolysis of organic phosphates. I. Pyridylmethyl phosphates, J. Am. Chem. Soc. 91, 5130–5135 (1969).CrossRefGoogle Scholar
  127. 127.
    Y. Murakami and J. Sunamoto, Solvolysis of organic phosphates. IV. 3-Pyridyl and 8quinolyl phosphates as effected by the presence of metal ions, Bull Chem. Soc. Jpn. 44, 1827–1834 (1971).CrossRefGoogle Scholar
  128. 128.
    B. Cooperman, A model for the role of metal ions in the enzyme-catalyzed hydrolysis of polyphosphates, Biochemistry 8, 5005–5010 (1969).PubMedCrossRefGoogle Scholar
  129. 129.
    M. Tetas and J. M. Lowenstein, The effect of bivalent metal ions on the hydrolysis of adenosine di-and triphosphate, Biochemistry 2, 350–357 (1963).PubMedCrossRefGoogle Scholar
  130. 130.
    N. Nelson and E. Racker, Phosphate transfer from adenosine triphosphate in a model system, Biochemistry 12, 563–566 (1973).PubMedCrossRefGoogle Scholar
  131. 131.
    A. Lewis, N. Nelson, and E. Racker, Laser Raman spectroscopy as a mechanistic probe of the phosphate transfer from adenosine triphosphate in a model system, Biochemistry 14, 1532–1535 (1975).PubMedCrossRefGoogle Scholar
  132. 132.
    E. J. Sampson, J. Fedor, P. A. Benkovic, and S. J. Benkovic, Intramolecular and divalent metal ion catalysis. Hydrolytic mechanism of O-phenyl N-(glycyl)phosphoramidate, J. Am. Chem. 38, 1301–1306 (1973).Google Scholar
  133. 133.
    A. S. Mildvan, in: The Enzymes (P. D. Boyer, ed.), Vol. II, pp. 445–536, Academic Press. New York (1970).Google Scholar
  134. 134.
    H. Ikenaga and Y. Inoue, Metal(II) ion catalyzed transphosphorylation of four homodinucleotides and five pairs of dinucleotide sequence isomers, Biochemistry 13, 577–582 (1974).PubMedCrossRefGoogle Scholar
  135. 135.
    F. J. Farrell, W. A. Kjellstrom, and T. G. Spiro, Metal-ion activation of phosphate transfer by bidentate coordination, Science 164, 320–321 (1969).PubMedCrossRefGoogle Scholar
  136. 136.
    C. A. Bunton and H. Chaimovich, The hydrolysis of glucose 6-phosphate, J. Am. Chem. Soc. 88, 4082–4089 (1966).CrossRefGoogle Scholar
  137. 137.
    C. Degani and H. Halmann, Solvolysis of phosphoric acid esters. Hydrolysis of glucose 6-phosphate. Kinetic and tracer studies, J. Am. Chem. Soc. 88, 4075–4181 (1966).PubMedCrossRefGoogle Scholar
  138. 138.
    P. A. Frey, F. C. Kokesh, and F. H. Westheimer, Reporter group at the active site of aceto-acetate decarboxylase. I. Ionization constant of the nitrophenol, J. Am. Chem. Soc. 93, 7266–7269 (1971).PubMedCrossRefGoogle Scholar
  139. 139.
    W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York (1969).Google Scholar
  140. 140.
    S. J. Benkovic and R. Lazarus, unpublished results.Google Scholar
  141. 141.
    G. J. Buist, C. A. Bunton, L. B. Kobinson, G. L. Sepulveda, and M. Stam, Micellar effects upon the hydrolysis of bis(2,4-di-nitrophenyl)hydrogen phosphate, J. Am. Chem. Soc. 92, 4072–4078 (1970).CrossRefGoogle Scholar
  142. 142.
    C. A. Bunton, E. J. Fendler, G. L. Sepulveda, and K. Yang, Micellar-catalyzed hydrolysis of nitrophenyl phosphates, J. Am. Chem. Soc. 90, 5512–5518 (1968).CrossRefGoogle Scholar
  143. 143.
    D. A. Usher, Mechanism of ribonuclease action, Proc. Nat. Acad. Sci. USA 62, 661–667 (1969).PubMedCrossRefGoogle Scholar
  144. 144.
    D. A. Usher, D. I. Richardson, Jr., and F. Eckstein, Absolute stereochemistry of the second step of ribonuclease action, Nature (London) 228, 663–665 (1970).CrossRefGoogle Scholar
  145. 145.
    D. A. Usher, E. S. Erenrich, and F. Eckstein, Geometry of the first step in the action of ribonuclease A, Proc. Nat. Acad. Sci. USA 69, 115–118 (1972).PubMedCrossRefGoogle Scholar
  146. 146.
    R. G. Yount, in: Advances in Enzymology (A. Meister, ed), Vol. 43, pp. 1–56, Wiley-Interscience, New York (1975).Google Scholar
  147. 147.
    F. Eckstein, W. Bruns, and A. Parmeggiani, Synthesis of guanosine 5’-di-and triphosphate derivatives with modified terminal phosphates: Effect on ribosome-elongation factor G-dependent reactions, Biochemistry 14, 5225–5232 (1975).PubMedCrossRefGoogle Scholar
  148. 148.
    M. E. Hickey, P. P. Waymack, and R. L. Van Etten, pH-Dependent leaving group effects on hydrolysis reaction of phosphate and phosphonate esters catalyzed by wheat germ acid phosphatase, Arch. Biochem. Biophys. 172, 439–448 (1976).PubMedCrossRefGoogle Scholar
  149. 149.
    J. F. Chlebowski and J. E. Coleman, Mechanism of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase, J. Biol. Chem. 249, 7192–7202, (1974).PubMedGoogle Scholar
  150. 150.
    D. G. Gorenstein, Dependence of 31P chemical shifts on oxygen—phosphorus—oxygen bond angles in phosphate esters, J. Am. Chem. Soc. 97, 898–900 (1975).CrossRefGoogle Scholar
  151. 151.
    J. F. Chlebowski, I. M. Armtage, P. P. Tusa, and J. E. Coleman, 31P NMR of phosphate and phosphonate complexes of metalloalkaline phosphatase, J. Biol. Chem. 251, 1207–1216 (1976).PubMedGoogle Scholar
  152. 152.
    A. S. Mildvan, in: Annual Review of Biochemistry (E. E. Snell, ed.), Vol. 43, pp. 357–399, Annual Reviews, Inc., Palo Alto, Calif. (1974).Google Scholar
  153. 153.
    J. H. Young, E. F. Korman, and J. Mclick, On the mechanism of ATP synthesis in oxidative phosphorylation: A review, Bioorg. Chem. 3, 1–15 (1974).CrossRefGoogle Scholar
  154. 154.
    C. R. Bagshaw, D. R. Trentham, R. G. Wolcott, and P. D. Boyer, Oxygen exchange in the y-phosphoryl group of protein-bound ATP during Mg’-dependent adenosine triphosphatase activity of myosin, Proc. Nat. Acad. Sci. USA 72, 2592–2596 (1975).PubMedCrossRefGoogle Scholar
  155. 155.
    P. D. Boyer, Energy transduction and proton translocation by adenosine triphosphates, FEBS Lett. 50, 91–94 (1975).PubMedCrossRefGoogle Scholar
  156. 156.
    R. Sarma, F. Ramirez, B. McKeever, J. F. Marecek, and S. Lee, Crystal and molecular structure of pentaphenoxyphosphorane, (C6HSO)5P. The configuration of acyclic, mono-cyclic, and spirobicyclic pentaoxyphosphoranes, J. Am. Chem. Soc. 98, 581–587 (1976).CrossRefGoogle Scholar
  157. 157.
    R. R. Holmes, Conformational preferences of pentacoordinate spirocyclic phosphorus compounds, J. Am. Chem. Soc. 96, 4143–4149 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • S. J. Benkovic
    • 1
  • K. J. Schray
    • 2
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of ChemistryLehigh UniversityBethlehemUSA

Personalised recommendations