Advertisement

Decarboxylations of β-Keto Acids and Related Compounds

  • Ralph M. Pollack

Abstract

The transfer of a proton from one atom to another is one of the most fundamental processes in chemistry and biochemistry. The detailed mechanism of this reaction has been given much attention both for proton transfers to and from carbon and the more electronegative oxygen and nitrogen.(1) An important class of proton transfers involves those reactions in which another bond is made or broken in addition to the proton transfer itself. Two extreme conditions may occur. The two steps of the reaction may be concerted (all bond breaking and making simultaneous) or stepwise (formation or cleavage of one bond leading to a true intermediate, followed by further bond making and/or breaking). We shall use the definition of a “true intermediate” proposed by Bauer,(2) that is, any species with a lifetime of greater than one molecular vibration: in other words a species with restoring forces for all of its vibrational motions.

Keywords

Transition State Schiff Base Proton Transfer Isotope Effect Hydrogen Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Bell, The Proton in Chemistry, 2nd ed., Cornell University Press, Ithaca, N.Y. (1973).Google Scholar
  2. 2.
    S. H. Bauer, Operational criteria for concerted bond breaking in gas-phase molecular elimination reactions, J. Am. Chem. Soc. 91, 3688–3689 (1969).CrossRefGoogle Scholar
  3. 3.
    K. J. Pedersen, The ketonic decomposition of beta-keto carboxylic acids, J. Am. Chem. Soc. 51, 2098–2107 (1929).CrossRefGoogle Scholar
  4. 4.
    W. Pastanagoff, Über die kinetik der katalytischen zersetzung der bromkamphokarbonsaure, Z. Phys. Chem. (Leipzig) 112, 448–460 (1924).Google Scholar
  5. 5.
    A. L. Bernoulli, H. Jakubowics,Zerfallsgeschwindigkeit mono-und disubstituierter Malonsäuren, Hely. Chim. Acta 4, 1018–1029 (1921).CrossRefGoogle Scholar
  6. 6.
    M. W. Logue, R. M. Pollack, and V. P. Vitullo, The nature of the transition state for the decarboxylation of beta-keto acids, J. Am. Chem. Soc. 97, 6868–6869 (1975).CrossRefGoogle Scholar
  7. 7.
    K. J. Pedersen, Dimethylacetoacetic acid. Hydrolysis of the ethyl ester. Ketonic decomposition reaction with iodine and bromine. Dissociation constant, J. Am. Chem. Soc. 58, 240–246 (1936).CrossRefGoogle Scholar
  8. 8.
    V. Prelog, P. Barman, and M. Zimmerman, Zur Kenntnis des Kohlenstoffringes. Weitere Untersuchungen über die Gültigkeitsgrenzen der Bredt’schen Regel. Eine Variante der Robinson’schen Synthese von cyclischen ungesättigten Ketonen, Hely. Chim. Acta 32, 1284–1296 (1949).CrossRefGoogle Scholar
  9. 9.
    G. Kobrich, Bredt compounds and the Bredt rule, Angew. Chem. Mt. Ed. Engl. 12, 464–473 (1973).CrossRefGoogle Scholar
  10. 10.
    J. P. Ferris and N. C. Miller, The decarboxylation of ß-keto acids. II. An investigation of the Bredt rule in bicyclo [3. 2. 1] octane systems, J. Am. Chem. Soc. 88, 3522–3527 (1966).CrossRefGoogle Scholar
  11. 11.
    K. J. Pedersen, The decomposition of a-nitrocarboxylic acids with some remarks on the decomposition of ß-ketocarboxylic acids, J. Phys. Chem. 38, 559 (1934).CrossRefGoogle Scholar
  12. 12.
    F. H. Westheimer and W. H. Jones, The effect of solvent on some reaction rates, J. Am. Chem. Soc. 63, 3283–3286 (1941).CrossRefGoogle Scholar
  13. 13.
    J. Hine, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1962), p. 305.Google Scholar
  14. 14.
    L. P. Hammett, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1970), Chap. 5.Google Scholar
  15. 15.
    T. S. Straub and M. L. Bender, Cycloamylases as enzyme models. The decarboxylation of benzoylacetic acids, J. Am. Chem. Soc. 94, 8881–8888 (1972).CrossRefGoogle Scholar
  16. 16.
    R. W. Hay and K. R. Tate, The kinetics of decarboxylation of benzoylacetic acid and its pmethoxy and p-nitro derivatives in dioxane-water mixtures, Aust. J. Chem. 23, 1407–1413 (1970).CrossRefGoogle Scholar
  17. 17.
    M. W. Logue, R. M. Pollack, and V. P. Vitullo, unpublished observations.Google Scholar
  18. 18.
    E. O. Wiig, Carbon dioxide cleavage from acetone dicarboxylic acid, J. Phys. Chem. 32, 961–989 (1928).CrossRefGoogle Scholar
  19. 19.
    G. A. Hall, Jr., and E. S. Hanrahan, Kinetics of the decarboxylation of phenylmalonic acid, J. Chem. Phys. 69, 2402–2406 (1965).CrossRefGoogle Scholar
  20. 20.
    K. J. Pedersen, The hydrolysis of ethyl acetoacetate and the decarboxylation of acetoacetic acid in strongly acid solution, Acta Chem. Scand. 15, 1718–1722 (1961).CrossRefGoogle Scholar
  21. 21.
    D. S. Noyce and Sr. M. A. Matesich, The decarboxylation of benzoylacetic acids in aqueous sulfuric acid, J. Chem. Phys. Chem. 32, 3243–3244 (1967).Google Scholar
  22. 22.
    C. G. Swain, R. F. W. Bader, R. M. Esteve, Jr., and R. N. Griffin, Use of substituent effects on isotope effects to distinguish between proton and hydride transfers. Part II. Mechanisms of decarboxylation of ß-keto acids in benzene, J. Am. Chem. Soc. 83, 1951–1955 (1961).CrossRefGoogle Scholar
  23. 23.
    E. M. Hodnett and R. L. Rowton, C14-isotope effects in the decarboxylation of 2-benzoylpropionic acid, Radioisotopes Phys. Sci. Ind. Proc. Conf. Use, Copenhagen 1960 3, 225–233 (1962).Google Scholar
  24. 24.
    A. Wood, Carbon isotope effects in the decarboxylation of oxaloacetic acid, Trans. Faraday Soc. 60, 1263–1267 (1964).CrossRefGoogle Scholar
  25. 25.
    A. Wood, Carbon isotope effects in the decarboxylation of oxaloacetic acid, Trans. Faraday Soc. 62, 1231–1235 (1966).CrossRefGoogle Scholar
  26. 26.
    J. Bigeleisen and L. Friedman, C13 isotope effect in the decarboxylation of malonic acid, J. Chem. Phys. 17, 998–999 (1949).CrossRefGoogle Scholar
  27. 27.
    P. E. Yankwich and M. Calvin, An effect of isotopic mass on the rate of a reaction involving the carbon-carbon bond, J. Chem. Phys. 17, 109–110 (1949).CrossRefGoogle Scholar
  28. 28.
    J. G. Lindsay, A. N. Boums, and H. G. Thode, C13 isotope effect in the decarboxylation of normal malonic acid, Can. J. Chem. 29, 192–200 (1951).PubMedCrossRefGoogle Scholar
  29. 29.
    P. E. Yankwich and A. L. Promisolow, Intramolecular carbon isotope effect in the decarboxylation of liquid malonic acid near the melting point, J. Am. Chem. Soc. 76, 4648–4651 (1954).CrossRefGoogle Scholar
  30. 30.
    A. Roe and M. Hellmann, Determination of an isotope effect in the decarboxylation of malonic-1-C14 acid, J. Chem. Phys. 19, 660 (1951).CrossRefGoogle Scholar
  31. 31.
    P. E. Yankwich, A. L. Promisolow, and R. F. Nystrom, C14 and C13 intramolecular isotope effects in the decarboxylation of liquid malonic acid at 140.5°, J. Am. Chem. Soc. 76, 5893–5895 (1954).CrossRefGoogle Scholar
  32. 32.
    A. Fry, in: Isotope Effects in Chemical Reactions ( C. J. Collins and N. S. Bowman, eds.), p. 364–414, Van Nostrand Reinhold, New York (1970).Google Scholar
  33. 33.
    F. H. Westheimer, The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium, Chem. Rev. 61, 265–273 (1961).CrossRefGoogle Scholar
  34. 34.
    J. Kurz, Transition state characterization for catalyzed reactions, J. Am. Chem. Soc. 85, 987–991 (1963).Google Scholar
  35. 35.
    G. M. Loudon, Aminolysis of a-acetoxystyrenes. The pKa of acetophenones in aqueous solution, J. Am. Chem. Soc. 98, 3591–3597 (1976).CrossRefGoogle Scholar
  36. 36.
    E. M. Arnett, Quantitative comparisons of weak organic bases, J. Am. Chem. 1, 223–405 (1963). The pKa value was corrected to the Hp scale as evaluated by Jorgenson and Hartter. 3 7 )Google Scholar
  37. 37.
    M. J. Jorgenson and D. R. Hartter, A critical re-evaluation of the Hammett acidity function at moderate and high acid concentrations of sulfuric acid. New Ho values based solely on a set of primary aniline indicators, J. Am. Chem. Soc. 85, 878–883 (1963).CrossRefGoogle Scholar
  38. 38.
    C. G. Swain, D. A. Kuhn, and R. L. Schowen, Effect of structural changes in reactants on the position of hydrogen-bonding hydrogens and solvating molecules in transition states. The mechanism of tetrahydrofuran formation from 4-chlorobutanol, J. Am. Chem. Soc. 87, 1553–1561 (1965).CrossRefGoogle Scholar
  39. 39.
    R. L. Schowen, Mechanistic deductions from solvent isotope effects, J. Am. Chem. Soc. 9, 275–332 (1972).Google Scholar
  40. 40.
    C. S. Tsai, Y. T. Lin, and E. E. Sharkawi, Mechanism of the decarboxylation of monoethyl oxalacetate, J. Am. Chem. 37, 85–87 (1972).Google Scholar
  41. 41.
    E. R. Thornton, A simple theory for predicting the effects of substituent changes on transition state geometry, J. Am. Chem. Soc. 89, 2915–2927 (1967).CrossRefGoogle Scholar
  42. 42.
    J. Hine and W. H. Sachs, Possible bifunctional catalysis by 2-dimethylaminoethylamine in the dealdolization of diacetone alcohol, J. Am. Chem. 39, 1937–1944 (1974).Google Scholar
  43. 43.
    J. Del Bene and J. A. Pople, Theory of molecular interactions. I. Molecular orbital studies of water polymers using a minimal Slater-type basis, J. Chem. Phys. 52, 4858–4866 (1970).CrossRefGoogle Scholar
  44. 44.
    P. A. Kollman, A theory of hydrogen bond directionality, J. Am. Chem. Soc. 94, 1837–1842 (1972).CrossRefGoogle Scholar
  45. 45.
    R. D. Gandour, Structural requirements for intramolecular proton transfers, Tetrahedron Lett. 1974, 295–298.Google Scholar
  46. 46.
    R. W. Hay and M. A. Bond, Kinetics of the decarboxylation of acetoacetic acid, Au.rt. J. Chem. 20, 1823–1828 (1967).CrossRefGoogle Scholar
  47. 47.
    J. R. Jones, R. E. Marks, and S. C. Subbarao, Kinetic isotope effects. Part 2. Rates of abstraction of hydrogen and tritium from acetophenone and some para-and meta-substituted acetophenones in alkaline media, Trans. Faraday Soc. 63, 111–123 (1967).CrossRefGoogle Scholar
  48. 48.
    C. G. Swain, E. C. Stivers, J. F. Reuwer, Jr., and L. J. Schaad, Use of hydrogen isotope effects to identify the attacking nucleophile in the enolization of ketones catalyzed by acidic acid, J. Am. Chem. Soc. 80, 5885–5893 (1958).CrossRefGoogle Scholar
  49. 49.
    J. E. Dixon and T. C. Bruice, Dependence of the primary isotope effect (kH/ku) on base strength for the primary amine catalyzed ionization of nitroethane, J. Am. Chem. Soc. 92, 905–909 (1970).CrossRefGoogle Scholar
  50. 50.
    R. P. Bell and D. M. Goodall, Kinetic hydrogen isotope effects in the ionization of some nitropäraffins, Proc. R. Soc. London Ser. A 294, 273–296 (1966).CrossRefGoogle Scholar
  51. 51.
    I. Fridovich and F. H. Westheimer, On the mechanism of the enzymatic decarboxylation of acetoacetate. II, J. Am. Chem. Soc. 84, 3208–3209 (1962).CrossRefGoogle Scholar
  52. 52.
    S. Warren, B. Zerner, and F. H. Westheimer, Acetoacetate decarboxylase. Identification of lysine at the active site, Biochemistry 5, 817–822 (1966).PubMedCrossRefGoogle Scholar
  53. 53.
    K. J. Pedersen, Amine catalysis in the decarboxylation of oxalacetic acid, Acta Chem. Scand. 8, 710–722 (1954).CrossRefGoogle Scholar
  54. 54.
    J. P. Guthrie and F. H. Westheimer, Cyanomethylamine as a model for acetoacetate de-carboxylase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 26, 562 (1967).Google Scholar
  55. 55.
    J. P. Guthrie and F. Jordan, Amine-catalyzed decarboxylation of acetoacetic acid. The rate constant for decarboxylation of a ß-imino acid, J. Am. Chem. Soc. 94, 9136–9141 (1972).CrossRefGoogle Scholar
  56. 56.
    B. R. Brown, The mechanism of thermal decarboxylation, Q. Rev., Chem. Soc. 1951, 131–146.Google Scholar
  57. 57.
    K. Taguchi and F. H. Westheimer, Decarboxylation of Schiff bases, J. Am. Chem. Soc. 95, 7413–7423 (1973).CrossRefGoogle Scholar
  58. 58.
    R. W. Hay, The aniline catalyzed decarboxylation of oxaloacetic acid, Aust. J. Chem. 18, 337–351 (1965).CrossRefGoogle Scholar
  59. 59.
    M. H. O’Leary and R. L. Baughn, Acetoacetate decarboxylase. Identification of the rate-determining step in the primary amine catalyzed reaction and in the enzymic reaction, J. Am. Chem. Soc. 94, 626–630 (1972).PubMedCrossRefGoogle Scholar
  60. 60.
    J. Hine, B. C. Menon, J. H. Jensen, and J. Mulders, Catalysis of a-hydrogen exchange. II. Isobutyraldehyde 2-d exchange via n-methyliminium ion formation, J. Am. Chem. Soc. 88, 3367–3373 (1966).CrossRefGoogle Scholar
  61. 61.
    M. L. Bender and A. Williams, Ketimine intermediates in amine-catalyzed enolization of acetone, J. Am. Chem. Soc. 88, 2502–2508 (1966).CrossRefGoogle Scholar
  62. 62.
    J. Hine, J. C. Craig, J. Underwood II, and F. A. Via, Kinetics and mechanism of the hydrolysis of N-isobutylidenemethylamine in aqueous solution, J. Am. Chem. Soc. 92, 5194–5199 (1970).CrossRefGoogle Scholar
  63. 63.
    F. R. Stermitz and W. H. Huang, Thermal and photodecarboxylation of 2-, 3-, and 4-pyridylacetic acid, J. Am. Chem. Soc. 93, 3427–3431 (1971).CrossRefGoogle Scholar
  64. 64.
    P. J. Taylor, The decarboxylation of some heterocyclic acetic acids, J. Chem. Soc. Perkin Trans. 2, 1972, 1077–1086.Google Scholar
  65. 65.
    R. G. Button and P. J. Taylor, The decarboxylation of some heterocyclic acetic acids. Part II. Direct and indirect evidence for the zwitterionic mechanisms, J. Chem. Soc. Perkin Trans 2 1973, 557–567.Google Scholar
  66. 66.
    W. P. Jencks, General acid—base catalysis of complex reactions in water, Chem. Rev. 72, 705–718 (1972).CrossRefGoogle Scholar
  67. 67.
    R. T. Arnold, O. C. Elmer, and R. M. Dodson, Thermal decarboxylation of unsaturated acids, J. Am. Chem. Soc. 72, 4359–4361 (1950).CrossRefGoogle Scholar
  68. 68.
    G. G. Smith and S. E. Blau, Decarboxylation, I. Kinetic study of the vapor phase thermal decarboxylation of 3-butenoic acid, J. Phys. Chem. 68, 1231 (1964).CrossRefGoogle Scholar
  69. 69.
    D. B. Bigley and J. C. Thurman, Studies in decarboxylation. Part II. Kinetic evidence for the mechanism of thermal decarboxylation of ß, y-unsaturated acids, J. Chem. Soc. 1965, 6202–6205.Google Scholar
  70. 70.
    B. D. Bigley and J. C. Thurman, Studies in decarboxylation. Part III. The thermal decarboxylation of 2,2-dimethyl-3-phenylbut-3-enoic acid, J. Chem. Soc. B 1966, 1076–1077.Google Scholar
  71. 71.
    D. B. Bigley, Studies in decarboxylation. Part I. The mechanism of decarboxylation of unsaturated acids, J. Chem. Soc. B 1964, 3894–3899.Google Scholar
  72. 72.
    D. B. Bigley and J. C. Thurman, Studies in decarboxylation. Part V. Kinetic isotope effects in the gas-phase thermal decarboxylation of 2,2-dimethyl-4-phenylbut-3-enoic acid, J. Chem. Soc B 1967, 941–943.Google Scholar
  73. 73.
    D. B. Bigley and J. C. Thurman, Studies in decarboxylation. Part VI. A comparison of the transition states for the decarboxylation of ß-keto and ß,y-unsaturated acids, J. Chem. Soc. B 1968, 436–440.Google Scholar
  74. 74.
    D. B. Bigley and R. W. May, Studies in decarboxylation. Part IV. The effect of alkyl substituents on the rate of gas-phase decarboxylation of some ß,y-unsaturated acids, J. Chem. Soc. 1967, 557–561.Google Scholar
  75. 75.
    D. B. Bigley and J. C. Thurman, On the transition state for decarboxylation of ß-keto acids and ß,y-unsaturated acids, Tetrahedron Lett. 1967, 2377–2380.Google Scholar
  76. 76.
    I. Fridovich, Acetoacetate decarboxylase, Enzymes 6, 255–271 (1972).CrossRefGoogle Scholar
  77. 77.
    G. A. Hamilton and F. H. Westheimer, On the mechanism of the enzymatic decarboxylation of acetoacetate, J. Am. Chem. Soc. 81, 6332–6333 (1959).CrossRefGoogle Scholar
  78. 78.
    D. E. Schmidt and F. H. Westheimer, pK of the lysine amino group at the active site of aceto-acetate decarboxylase, Biochemistry 10, 1249–1253 (1971).PubMedCrossRefGoogle Scholar
  79. 79.
    P. A. Frey, F. C. Kokesh, and F. H. Westheimer, A reporter group at the active site of aceto-acetate decarboxylase. I. Ionization constant of the amino group, J. Am. Chem. Soc. 93, 7266–7269 (1971).PubMedCrossRefGoogle Scholar
  80. 80.
    F. C. Kokesh and F. H. Westheimer, A. reporter group at the active site of acetoacetate decarboxylase. Il. Ionization constant of the amino group, J. Am. Chem. Soc. 93, 7270–7274 (1971).Google Scholar
  81. 81.
    W. P. Jencks, Catalysis in Chemistry and Enzymology,McGraw-Hill, New York (1969), pp. 490ff.Google Scholar
  82. 82.
    J. Hine, M. S. Cholod, and W. K. Chess, Jr., Kinetics of the formation of imines from acetone and primary amines. Evidence for internal acid-catalyzed dehydration of certain intermediate carbinolamines, J. Am. Chem. Soc. 95, 4270–4276 (1973).CrossRefGoogle Scholar
  83. 83.
    J. Hine and W. S. Li, Internal catalysis in imine formation from acetone and acetone-a6 and conformationally constrained derivatives of N,N-dimethyl-l,3-propanediamine, J. Am. ChemChem. 40, 2622–2626 (1975).Google Scholar
  84. 84.
    R. M. Pollack and R. H. Kayser, unpublished observations.Google Scholar
  85. 85.
    R. M. Pollack and M. Brault, Synergism of the effect of solvent and of general base catalysis in the hydrolysis of a Schiff base, J. Am. Chem. Soc. 98, 247–248 (1976).CrossRefGoogle Scholar
  86. 86.
    J. Crosby, R. Stone, and G. E. Lienhard, Mechanisms of thiamine-catalyzed reactions. Decarboxylation of 2-(1-carboxy-l -hydroxyethyl)-3,4-dimethylthiazolium chloride, J. Am. Chem. Soc. 92, 2891–2900 (1970).PubMedCrossRefGoogle Scholar
  87. 87.
    M. L. Bender and A. Williams, Ketimine intermediates in amine-catalyzed enolization of acetone, J. Am. Chem. Soc. 88, 2502–2508 (1966).CrossRefGoogle Scholar
  88. 88.
    C. H. Rochester, Acidity Functions,Academic Press, New York (1970), Chap. 7.Google Scholar
  89. 89.
    R. Kluger and K. Nakaoka, Inhibition of acetoacetate decarboxylase by ketophosphonates. Structural and dynamic probes of the active site, Biochemistry 13, 910–914 (1974).PubMedCrossRefGoogle Scholar
  90. 90.
    W. Tagaki and F. H. Westheimer, Acetoacetate decarboxylase. Catalysis of hydrogen—deuterium exchange in acetone, Biochemistry 7, 901–905 (1968).PubMedCrossRefGoogle Scholar
  91. 91.
    G. Hammons, F. H. Westheimer, K. Nakaoka, and R. Kluger, Proton-exchange reactions of acetone and butanone. Resolution of steps in catalysis by acetoacetate decarboxylase, J. Am. Chem. Soc. 97, 1568–1671 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Ralph M. Pollack
    • 1
  1. 1.Laboratory for Chemical Dynamics, Department of ChemistryUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations