Advertisement

Transition States for Hydrolysis of Acetals, Ketals, Glycosides, and Glycosylamines

  • E. H. Cordes
  • H. G. Bull

Abstract

The point of this review is to define, within limits of current understanding, transition-state structures for enzymic hydrolysis of glycosyl compounds. Transition-state structures for corresponding nonenzymic reactions will be developed to the extent that such information is useful in consideration of the enzymic reactions.

Keywords

Isotope Effect Nicotinamide Adenine Dinucleotide Diethyl Acetal Deuterium Isotope Effect Polar Substituent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1(a).
    W. W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations, Biochim. Biophys. Acta 67, 104–137 (1963).PubMedCrossRefGoogle Scholar
  2. 1(b).
    W. W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: Nomenclature and theory, Biochim. Biophys. Acta 67, 173–187 (1963). (c) W. W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection, Biochim. Biophys. Acta 67, 188–196 (1963).Google Scholar
  3. 1(c).
    W. W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection, Biochim. Biophys. Acta 67, 188–196 (1963).Google Scholar
  4. 2.
    I. H. Segel, Enzyme Kinetics, Wiley, New York (1975).Google Scholar
  5. 3.
    W. W. Cleland, in: The Enzymes (P. D. Boyer, ed.), Vol. II, pp. 1–65, Academic Press, New York (1970).Google Scholar
  6. 4.
    J. F. Kirsch, in: Advances in Linear Free Energy Relationships Plenum Press, New York (1972).Google Scholar
  7. 5.
    A. Ruhlmann, D. Kukla, P. Schwager, K. Bartels, and R. Huber, Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor, J. Mol. Biol 77, 417–436 (1973).PubMedCrossRefGoogle Scholar
  8. 6.
    E. H. Cordes, Mechanism and catalysis for the hydrolysis of acetals, ketals, and ortho esters, Prog. Phys. Org Chem. 4, 1–44 (1967).CrossRefGoogle Scholar
  9. 7.
    E. H. Cordes and H. G. Bull, Mechanism and catalysis for hydrolysis of acetals, ketals, and ortho esters, Chem. Rev 74, 581–603 (1974).CrossRefGoogle Scholar
  10. 8.
    T. H. Fife, General acid catalysis of acetal, ketal, and ortho ester hydrolysis, Acc. Chem. Res 5, 264–272 (1972).CrossRefGoogle Scholar
  11. 9.
    B. M. Dunn and T. C. Bruice, Physical organic models for the mechanism of lysozyme action, Adv. Enzymol 37, 1–60 (1973).PubMedGoogle Scholar
  12. 10.
    J. M. O’Gorman and H. J. Lucas, Hydrolysis of the acetal of D(+)-2-octanol, J. Am. Chem. Soc 72, 5489–5490 (1950).CrossRefGoogle Scholar
  13. 11.
    H. K. Garner and H. J. Lucas, Preparation and hydrolysis of some acetals and esters of D(—)-2,3-butanediol, J. Am. Chem. Soc 72, 5497–5501 (1952).CrossRefGoogle Scholar
  14. 12.
    E. R. Alexander, H. M. Busch, and G. L. Webster, Preparation and hydrolysis of optically active 2-butyl acetal, J. Am. Chem. Soc 74, 3173 (1952).CrossRefGoogle Scholar
  15. 13.
    F. Stasiuk, W. A. Sheppard, and A. N. Bourns, An oxygen-18 study of acetal formation and hydrolysis, Can. J. Chem 34, 123–127 (1956).CrossRefGoogle Scholar
  16. 14.
    A. M. Wenthe and E. H. Cordes, Concerning the mechanisms of acid-catalyzed hydrolysis of ketals, ortho esters, and orthocarbonates, J. Am. Chem. Soc 87, 3173–3180 (1965).CrossRefGoogle Scholar
  17. 15.
    T. H. Fife and L. H. Brod, General acid catalysis and the pH-independent hydrolysis of 2-(p-nitrophenoxy) tetrahydropyran, J. Am. Chem. Soc 92, 1681–1684 (1970).CrossRefGoogle Scholar
  18. 16.
    E. Anderson and B. Capon, Intermolecular general-acid catalysis in acetal hydrolysis, J. Chem. Soc. B 1969, 1033–1037.Google Scholar
  19. 17.
    H. G. Bull, K. Koehler, T. C. Pletcher, J. J. Ortiz, and E. H. Cordes, Effects of a-deuterium substitution, polar substituents, temperature, and salts on the kinetics of hydrolysis of acetals and ortho esters, J. Am. Chem. Soc 93, 3002–3011 (1971).CrossRefGoogle Scholar
  20. 18.
    V. J. Shiner, M. W. Rapp, E. A. Halevi, and M. Wolfsberg, Solvolytic a-deuterium effects for different leaving groups, J. Am. Chem. Soc 90, 7171–7172 (1968).CrossRefGoogle Scholar
  21. 19.
    A. Streitwieser, Jr., and G. A. Dafforn, Secondary deuterium isotope effects in trifluoroacetolysis of isopropyl p-toluenesulfonate, Tetrahedron Lett. 16, 1263–1266 (1969).CrossRefGoogle Scholar
  22. 20.
    J. E. Leffler, Parameters for the description of transition states, Science 117, 340–341 (1953).PubMedCrossRefGoogle Scholar
  23. 21.
    G. S. Hammond, A correlation of reaction rates, J. Am. Chem. Soc 77, 334–338 (1955).CrossRefGoogle Scholar
  24. 22.
    E. R. Thornton, A simple theory for predicting the effects of substituent changes on transition-state geometry, J. Am. Chem. Soc 89, 2915–2927 (1967).CrossRefGoogle Scholar
  25. 23.
    J. N. Br¢nsted and W. F. K. Wynne-Jones, Acid catalysis in hydrolytic reactions, Trans. Faraday Soc 25, 59–76 (1929).CrossRefGoogle Scholar
  26. 24.
    W. P. Jencks, General acid—base catalysis of complex reactions in water, Chem. Rev. 72, 705–718 (1972).CrossRefGoogle Scholar
  27. 25.
    E. Anderson and T. H. Fife, General acid catalysis of ortho ester hydrolysis, J. Org. Chem 37, 1993–1996 (1972).CrossRefGoogle Scholar
  28. 26.
    E. Anderson and T. H. Fife, General acid catalysis of acetal hydrolysis. The hydrolysis of substituted benzaldehyde di-tert-butyl acetals, J. Am. Chem. Soc 93, 1701–1704 (1971).CrossRefGoogle Scholar
  29. 27.
    T. C. Bruice and Dennis Piszkiewicz, A search for carboxyl-group catalysis in ketal hydrolysis, J. Am. Chem. Soc 89, 3568–3576 (1967).CrossRefGoogle Scholar
  30. 28.
    D. Piszkiewicz and T. C. Bruice, Glycoside hydrolysis. Il. Intramolecular carboxyl and acetamido group catalysis in ß-glycoside hydrolysis, J. Am. Chem. Soc 90, 2156–2163 (1968).PubMedCrossRefGoogle Scholar
  31. 29.
    B. Capon, M. C. Smith, E. Anderson, R. H. Dahm, and G. H. Sankey, Intramolecular catalysis in the hydrolysis of glycosides and acetals, J. Chem. Soc. B 1969, 1038–1047.Google Scholar
  32. 30.
    a) B. M. Dunn and T. C. Bruice, Steric and electronic effects on the neighboring general acid catalyzed hydrolysis of methyl phenyl acetals of formaldehyde, J. Am. Chem. Soc. 92, 2410–2416 (1970). (b) B. M. Dunn and T. C. Bruice, Further investigation of the neighboring carboxyl group. Catalysis of hydrolysis of methyl phenyl acetals of formaldehyde. Electrostatic and solvent effects, J. Am. Chem. Soc. 92, 6589–6594 (1970). (c) B. M. Dunn and T. C. Bruice, Electrostatic catalysis. IV. Intramolecular carboxyl group electrostatic facilitation of the A-1-catalyzed hydrolysis of alkyl phenyl acetals of formaldehyde. The influence of oxocarbonium ion stability, J. Am. Chem. Soc. 93, 5725–5731 (1971).CrossRefGoogle Scholar
  33. 31.
    T. H. Fife and E. Anderson, Intramolecular carboxyl group participation in acetal hydrolysis, J. Am. Chem. Soc 93, 6610–6614 (1971).CrossRefGoogle Scholar
  34. 32.
    E. Anderson and T. H. Fife, Carboxy-group participation in acetal hydrolysis. The hydrolysis of benzaldehyde disalicyl acetal, Chem. Commun. 1971, 1470–1471.Google Scholar
  35. 33.
    B. Capon, Mechanism in carbohydrate chemistry, Chem. Rev 69, 407–498 (1969).CrossRefGoogle Scholar
  36. 34.
    T. Imoto, L. N. Johnson, A. C. T. North, D. C. Phillips, and J. A. Rupley, in: The En. vines (P. D. Boyer, ed.), Vol. VII pp. 665–868, Academic Press, New York (1970).Google Scholar
  37. 35.
    C. C. F. Blake, L. N. Johnson, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma, Crystallographic studies of the activity of hen egg-white lysozyme, Proc. Roy. Soc. London Ser. B 167, 378–388 (1967).CrossRefGoogle Scholar
  38. 36.
    S. Kuramitsu, K. Ikeda, K. Hamaguchi, H. Fujio, T. Amano, S. Miwa, and T. Nishina, Ionization constants of Glu 35 and Asp 52 in hen, turkey, and human lysozymes, J. Biochem. (Tokyo) 76, 671–683 (1974).Google Scholar
  39. 37.
    S. K. Banerjee and J. A. Rupley, Turkey egg white lysozyme, free energy, enthalpy. and steady state kinetics of reaction with N-acetylglucosamine oligosaccharides, J. Biol. Chen 250, 8267–8274 (1975).Google Scholar
  40. 38.
    J. A. Rupley, L. Butler, M. Gerring, F. J. Hartdegen, and R. Pecoraro, Studies on the enzymic activity of lysozyme, W. The binding of saccharides, Proc. Nat. Acad. Sci. C.S.A 57, 1088–1095 (1967).CrossRefGoogle Scholar
  41. 39.
    I. I. Secemski, S. S. Lehrer, and G. E. Lienhard, A transition state analog for lysozyme, J. Biol. Chem 247, 4740–4748 (1972).PubMedGoogle Scholar
  42. 40.
    L. O. Ford, L. N. Johnson, P. A. Machin, D. C. Phillips, and R. Tjian, Crystal structure of a lysozyme—tetrasaccharide lactone complex, J. Mol. Biol 88, 349–371 (1974).PubMedCrossRefGoogle Scholar
  43. 41.
    F. W. Dahlquist, T. Rand-Meir, and M. A. Raftery, Demonstration of carbonium ion intermediate during lysozyme catalysis, Proc. Nat. Acad. Sci. U.S.A 61, 1194–1198 (1968).CrossRefGoogle Scholar
  44. 42.
    F. W. Dahlquist, T. Rand-Meir, and M. A. Raftery, Application of secondary 7-deuterium kinetic isotope effects to studies of enzyme catalysis. Glucoside hydrolysis by lysozyrne and ß-glucosidase, Biochemistry 8, 4214–4221 (1969).PubMedCrossRefGoogle Scholar
  45. 43.
    L. E. H. Smith, L. H. Mohr, and M. A. Raftery, Mechanism for lysozyme-catalyzed hydrolysis, J. Am. Chem. Soc 95, 7497–7500 (1973).PubMedCrossRefGoogle Scholar
  46. 44.
    E. Holler, J. A. Rupley, and G. P. Hess, Productive and nonproductive lysozyme-chitosaccharide complexes. Kinetic investigations, Biochemistry 14, 2377–2385 (1975).PubMedCrossRefGoogle Scholar
  47. 45.
    G. Lowe, G. Sheppard, M. L. Sinnott, and A. Williams, Lysozyme-catalysed hydrolysis of some ß-aryl di-N-acetylchitobiosides, Biochem. J 104, 893–899 (1967).PubMedGoogle Scholar
  48. 46.
    A. N. Hall, S. Hollingshead, and H. N. Rydon, The acid and alkaline hydrolysis of some substituted phenyl a-glucosides, J. Chem. Soc. pp. 4290–4295 (1961).Google Scholar
  49. 47.
    T. H. Fife and L. K. Jao, General acid catalysis of acetal hydrolysis. The hydrolysis of 2-aryloxytetrahydropyrans, J. Am. Chem. Soc. 90 4081–4085 (1968).CrossRefGoogle Scholar
  50. 48.
    E. Anderson and B. Capon, Intermolecular general acid catalysis in acetal hydrolysis, J. Chem. Soc. B pp. 1033–1037 (1969).Google Scholar
  51. 49.
    C. S. Tsai, J. Y. Tang, and S. C. Subbarao, Substituent effect on lysozyme-catalysed hydrolysis of some ß-aryl di-N-acetylchitobiosides, Biochem. J 114, 529–534 (1969).PubMedGoogle Scholar
  52. 50.
    S. K. Banerjee, E. Holler, G. P. Hess, and J. A. Rupley, Reaction of N-acetylglucosamine oligosaccharides with lysozyme. Temperature, pH, and solvent deuterium isotope effects; equilibrium, steady state, and pre-steady state measurements, J. Biol. Chem 250, 4355–4367 (1975).PubMedGoogle Scholar
  53. 51.
    K. Wallenfels and R. Weil, in: The Enzymes (P. D. Boyer, ed.), Vol. VII, pp. 617–663, Academic Press, New York (1972).Google Scholar
  54. 52.
    R. E. Huber, G. Kurz, and K. Wallenfels, A quantitation of the factors which affect the hydrolase and transgalactosylase activities of ß-galactosidase (E. coli) on lactose, Biochemistry 15, 1994–2001 (1976).PubMedCrossRefGoogle Scholar
  55. 53.
    M. L. Sinnott and I. J. L. Southard, The mechanism of action of ß-galactosidase. Effect of aglycone nature and a-deuterium substitution on the hydrolysis of aryl galactosides, Biochem. J 133, 89–98 (1973).PubMedGoogle Scholar
  56. 54.
    M. L. Sinnott, ß-Galactosidase-catalysed hydrolysis of the ß-D-galactopyranosylpyridinium cation, J. Chem. Soc. Chem. Commun. 1973, 535–536.Google Scholar
  57. 55.
    M. L. Sinnott and S. G. Withers, The ß-galactosidase-catalysed hydrolysis of ß-D-galactopyranosyl pyridinium salts, Biochem. J 143, 751–762 (1974).PubMedGoogle Scholar
  58. 56.
    M. L. Sinnott, O. M. Viratelle, and S. G. Withers, pH- and magnesium ion-dependence of the hydrolyses of ß-D-galactopyranosyl pyridinium salts catalysed by Escherichia coli ßgalactosidase, Biochem. Soc. Trans 3, 1006–1009 (1975).Google Scholar
  59. 57.
    J. Conchie, A. J. Hay, I. Strachan, and G. A. Levvy, Inhibition of glycosidases by aldonolactones of corresponding configuration, Biochem. J. 102, 929–941 (1967).PubMedGoogle Scholar
  60. 58.
    A. L. Fink and K. J. Angelides, ß-Galactosidase catalyzed hydrolysis of O-nitrophenyl-ßD-galactoside at subzero temperatures. Evidence for a galactosyl-enzyme intermediate, Biochem. Biophys. Res. Commun 64, 701–708 (1975).PubMedCrossRefGoogle Scholar
  61. 59.
    D. F. Wentworth and R. Wolfenden, Slow binding of D-galactal, a “reversible” inhibitor of bacterial ß-galactosidase, Biochemistry 13, 4715–4720 (1974).PubMedCrossRefGoogle Scholar
  62. 60.
    T. E. Barman, Enzyme Handbook, Vol. 2, Springer-Verlag New York, Inc., New York (1969), pp. 578–779.Google Scholar
  63. 61.
    W. W. Pigman, Specificity, classification, and mechanism of action of elvcosidases. Adv. Enzymol 4, 41–74 (1944).Google Scholar
  64. 62.
    G. Legler, Labelling of the active centre of a ß-glucosidase, Biochim. Biophys. Acta 131, 728–729 (1968).Google Scholar
  65. 63.
    R. L. Nath and H. N. Rydon, The influence of structure on the hydrolysis of substituted phenyl ß-D-glucoside by emulsin, Biochem. J 57, 1–10 (1954).PubMedGoogle Scholar
  66. 64.
    G. A. Levvy and S. M. Snaith, The inhibition of glycosidases by aldonolactones, Adv. Enzymol 36, 151–181 (1972).PubMedGoogle Scholar
  67. 65.
    J. Conchie, A. L. Gelman, and G. A. Levvy, Inhibition of glycosidases by aldonolactones of corresponding configuration. The C-4- and C-6-specificity of ß-glucosidase and ß-galactosidase, Biochem. J 103, 609–615 (1967).PubMedGoogle Scholar
  68. 66.
    G. Legler and F. Witassek, Anzahl der aktiven Zentren der ß-Glucosidasen A und B aus dem Süssmandel-emulsin durch Fluoreszenzmessungen, Hoppe-Seyler’s Z. Physiol. Chem 355, 617–625 (1974).PubMedCrossRefGoogle Scholar
  69. 67.
    E. T. Reese and F. W. Parrish, Nojirimycin and D-glucono-1,5-lactone as inhibitors of carbohydrases, Carbohydr. Res 18, 381–388 (1971).CrossRefGoogle Scholar
  70. 68.
    H. L. Lai and B. Axelrod, 1-Aminoglycosides, a new class of specific inhibitors of glycosidases, Biochem. Biophys. Res. Commun 54, 463–468 (1973).PubMedCrossRefGoogle Scholar
  71. 69.
    B. Capon, Mechanism in carbohydrate chemistry, Chem. Rev 69, 407–498 (1969).CrossRefGoogle Scholar
  72. 70.
    C. A. Dekker, Nucleic acids. Selected topics related to their enzymology and chemistry, Annu. Rev. Biochem 29, 453–474 (1960).PubMedCrossRefGoogle Scholar
  73. 71.
    F. Micheel and A. Heesing, Über die stabilität der N-glykoside, insbesondere der guanidinglykoside und der nucleoside, Chem. Ber 94, 1814–1824 (1961).CrossRefGoogle Scholar
  74. 72.
    G. W. Kenner, in: The Chemistry and Biology of Purines, ( G. E. W. Wolstenholme and C. M. O’Connor, eds.), pp. 312–313, Little, Brown, Boston (1957).Google Scholar
  75. 73.
    J. A. Zoltewicz, D. F. Clark, T. W. Sharpless, and G. Grabe, Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides, J. Am. Chem. Soc 92, 1741–1750 (1970).PubMedCrossRefGoogle Scholar
  76. 74.
    J. A. Zoltewicz and D. F. Clark, Kinetics and mechanism of the hydrolysis of guanosine and 7-methylguanosine nucleosides in perchloric acid, J. Org. Chem 37, 1193–1197 (1972).PubMedCrossRefGoogle Scholar
  77. 75.
    R. P. Panzica, R. J. Rousseau, R. K. Robins, and L. B. Townsend, A study on the relative stability and a quantitative approach to the reaction mechanism of the acid-catalyzed hydrolysis of certain 7- and 9-ß-n-ribofuranosylpurines, J. Am. Chem. Soc 94, 4708–4714 (1972).PubMedCrossRefGoogle Scholar
  78. 76.
    E. R. Garrett and P. J. Mehta, Solvolysis of adenine nucleosides. I. Effects of sugars and adenine substituents on acid solvolyses, J. Am. Chem. Soc 94, 8532–8541 (1972).PubMedCrossRefGoogle Scholar
  79. 77.
    L. Hevesi, E. Wolfson-Davidson, J. B. Nagy, O. B. Nagy, and A. Bruylants, Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides, J. Am. Chem. Soc 94, 4715–4720 (1972).PubMedCrossRefGoogle Scholar
  80. 78.
    E. R. Garrett, Kinetics of the hydrolytic degradation of a nucleoside, the antibiotic psicofuranine, J. Am. Chem. Soc 82, 827–832 (1960).CrossRefGoogle Scholar
  81. 79.
    R. Shapiro and S. Kang, Uncatalyzed hydrolysis of deoxyuridine, thymidine, and 5-bromodeoxyuridine, Biochemistry 8, 1806–1810 (1969).PubMedCrossRefGoogle Scholar
  82. 80.
    R. Shapiro and M. Danzig, Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. The general mechanism of deoxyribonucleoside hydrolysis, Biochemistry 11, 23–29 (1972).PubMedCrossRefGoogle Scholar
  83. 81.
    J. Cadet and R. Teoule, Nucleic acid hydrolysis. 1. Isomerization and anomerization of pyrimidic deoxyribonucleosides in an acidic medium, J. Am. Chem. Soc 96, 6517–6519 (1974).PubMedCrossRefGoogle Scholar
  84. 82.
    B. M. Anderson and C. D. Anderson, The effect of buffers on nicotinamide adenine di-nucleotide hydrolysis, J. Biol. Chan 238, 1475–1478 (1963).Google Scholar
  85. 83.
    N. Kaplan, in: Current Aspects of Biochemical Energetics, ( N. O. Kaplan and E. P. Kennedy, eds.), pp. 447–458, Academic Press, New York (1966).Google Scholar
  86. 84.
    N. 1, Swislocki and N. O. Kaplan, Purification and characterization of diphosphopyridine nucleosidase from pig brain, J. Biol. Chem 242, 1083–1088 (1967).Google Scholar
  87. 85.
    F. Schuber and P. Travo, Calf-spleen nicotinamide-adenine dinucleotide glycohydrolase. Solubilization purification and properties of the enzyme, Eur. J. Biochem 65, 247–255 (1976).PubMedCrossRefGoogle Scholar
  88. 86.
    J. H. Yuan and B. M. Anderson, Bull semen nicotinamide adenine dinucleotide nucleosidase, J. Biol. Chem 246, 2111–2115 (1971).PubMedGoogle Scholar
  89. 87.
    J. H. Yuan, L. B. Barnett, and B. M. Anderson, Bull semen nicotinamide adenine dinucleotide nucleosidase. II. Physical and chemical studies, J. Biol. Chem 247, 511–514 (1972).PubMedGoogle Scholar
  90. 88.
    J. Everse and N. O. Kaplan, Characteristics of microbial diphosphopyridine nucleosidases containing exceptionally large amounts of polysaccharides, J. Biol. Chem 243, 6072–6075 (1968).PubMedGoogle Scholar
  91. 89.
    J. Everse, K. E. Everse, and N. O. Kaplan, The pyridine nucleosidases from Bacillus subtilis and Neurospora crassa. Isolation and structural properties, Arch. Biochem. Biophys 169, 702–713 (1975).PubMedCrossRefGoogle Scholar
  92. 90.
    J. Everse, J. B. Griffin, and N. O. Kaplan, The pyridine nucleosidase from Bacillus subtilis. Kinetic properties and enzyme-inhibitor interactions, Arch. Biochem. Biophys 169, 714–723 (1975).PubMedCrossRefGoogle Scholar
  93. 91.
    B. M. Anderson, C. J. Ciotti, and N. O. Kaplan, Chemical properties of 3-substituted pyridine analogues of diphosphopyridine nucleotide, J. Biol. Chem 234 1219–1225 (1959).PubMedGoogle Scholar
  94. 92.
    C. Zervos, R. Apitz, A Stafford, and E. H. Cordes, Kinetic properties of bull semen NAD glycohydrolase, Biochim. Biophys. Acta 220, 636–638 (1970).PubMedCrossRefGoogle Scholar
  95. 93.
    J. H. Yuan and B. M. Anderson, Bull semen nicotinamide adenine dinucleotide nucleosidase. III. Properties of the substrate binding site, J. Biol. Chem 247, 515–520 (1972).PubMedGoogle Scholar
  96. 94.
    J. H. Yuan and B. M. Anderson, Bull semen nicotinamide adenine dinucleotide nucleosidase.V. Kinetic studies, J. Biol. Chem 248, 417–421 (1973).PubMedGoogle Scholar
  97. 95.
    J. H. Yuan and B. M. Anderson, Bull semen nicotinamide adenine dinucleotide nucleosidase. IV. Nonpolar interactions of inhibitors with the substrate binding site, Arch. Biochem. Biophys 149, 419–424 (1972).PubMedCrossRefGoogle Scholar
  98. 96.
    N. I. Swislocki, M. I. Kalish, F. I. Chasalow, and N. O. Kaplan, Solubilization and comparative properties of some mammalian diphosphopyridine nucleosidases, J. Biol. Chem 242, 1089–1094 (1967).PubMedGoogle Scholar
  99. 97.
    R. Apitz, K. Mickelson, K. Shriver, and E. H. Cordes, Some properties of reactions catalyzed by pig brain NAD glycohydrolase, Arch. Biochem. Biophys 143, 359–364 (1971).PubMedCrossRefGoogle Scholar
  100. 98.
    E. Cayama, R. Apitz-Castro, and E. H. Cordes, Substrate-dependent, thiol-dependent inactivation of pig brain nicotinamide adenine dinucleotide glycohydrolase, J. Biol. Chem 248, 6479–6483 (1973).PubMedGoogle Scholar
  101. 99.
    a) S. Green and A. Dobrjansky, pH-Dependent inactivation of nicotinamide-adenine dinucleotide glycohydrolase by its substrate, oxidized nicotinamide-adenine dinucleotide, Biochemistry 10, 2496–2500 (1971). (b) S. Green and A. Dobrjansky, Inactivation of nicotinamide-adenine dinucleotide glycohydrolase from livers of different mammalian species by nicotinamide-adenine dinucleotide, Biochemistry 10, 4533–4538 (1971).PubMedCrossRefGoogle Scholar
  102. 100.
    V. L. Schramm and L. I. Hochstein, Purification, crystallization, and subunit structure of allosteric adenosine 5 -monophosphate nucleosidase, Biochemistry 11, 2777–2783 (1972).PubMedCrossRefGoogle Scholar
  103. 101.
    V. L. Schramm, Kinetic properties of allosteric adenosine monophosphate nucleosidase from Azotobacter vinelandii, J. Biol. Chem. 249, 1729–1736 (1974).PubMedGoogle Scholar
  104. 102.
    V. L. Schramm and L. I. Hochstein, Stabilization of allosteric monophosphate nucleosidase by inorganic salts, substrate, and essential activator, Biochemistry 10, 3411–3417 (1971).PubMedCrossRefGoogle Scholar
  105. 103.
    V. L. Schramm and J. F. Morrison, Studies on the allosteric modification of nucleoside diphosphatase activity by magnesium nucleoside triphosphates and inosine diphosphate, Biochemistry 10, 2272–2277 (1971).PubMedCrossRefGoogle Scholar
  106. 104.
    V. L. Schramm, P. Freidenreich, and F. Fatabene, The inhibition of & nucleosidase by formycin-5-phosphate, a possible transition state analog, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35, 1706 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • E. H. Cordes
    • 1
  • H. G. Bull
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations