Transition-State Properties in Acyl and Methyl Transfer

  • Mohamed F. Hegazi
  • Daniel M. Quinn
  • Richard L. Schowen


Our aspirations for this chapter are to give a brief discussion of the mechanistic background for acyl and methyl transfer (two types of group transfer which share some characteristics but make a useful contrast in other ways), to show how some of the methods of Part II of this volume have been applied to acyltransfer and methyl-transfer enzymes and to indicate what conclusions can be drawn at present about transition-state properties for the particular enzymes discussed. Only transfer by nucleophilic displacement at the intact groups will be treated.


Transition State Isotope Effect Nucleophilic Attack Kinetic Isotope Effect Acyl Transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Kirsch, in: Advances in Linear Free Energy Relationships ( N. B. Chapman and J. Shorter, eds.), pp. 369–400, Plenum Press, New York (1972).CrossRefGoogle Scholar
  2. 2.
    W. P. Jencks, Structure-reactivity correlations and general acid–base catalysis in enzymic transacylation reactions, Cold Spring Harbor Symp. Quant. Biol. 36 1–11 (1972).Google Scholar
  3. 3.
    K. T. Douglas, A basis for biological phosphate and sulfate transfers—transition state properties of transfer substrates, Prog. Bioorg. Chem 4, 193–238 (1976).Google Scholar
  4. 4.
    C. K. Ingold, Structure and Mechanism in Organic Chemistry, 2nd ed., Cornell University Press, Ithaca, N.Y. (1969), Chap. 7.Google Scholar
  5. 5.
    J. Hine, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1962), Chaps. 6, 7.Google Scholar
  6. 6.
    C. A. Bunton, Nucleophilic Substitution at a Saturated Carbon Atom, Elsevier, Amsterdam (1963).Google Scholar
  7. 7.
    A. Streitwieser, Solvolytic Displacement Reactions, McGraw-Hill, New York (1962).Google Scholar
  8. 8.
    S. L. Johnson, General base and nucleophilic catalysis of ester hydrolysis and related reactions, Adv. Phys. Org. Chem 5, 237–330 (1967).CrossRefGoogle Scholar
  9. 9.
    W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York (1969).Google Scholar
  10. 10.
    M. L. Bender, Mechanisms of Homogeneous Catalysis from Protons to Proteins, WileyInterscience, New York (1971).Google Scholar
  11. 11.
    A. J. Kirby, in: Comprehensive Chemical Kinetics (C. H. Bamford and C. F. H. Tipper, eds.), Vol. 10, 57–207, Elsevier, Amsterdam (1972).Google Scholar
  12. 12.
    R. J. E. Talbot, in: Comprehensive Chemical Kinetics (C. H. Bamford and C. F. H. Tipper, eds.), Vol. 10, 209–293, Elsevier, Amsterdam (1972).Google Scholar
  13. 13.
    W. P. Jencks, General acid–base catalysis of complex reactions in water, Chem. Rev 72, 705–718 (1972).CrossRefGoogle Scholar
  14. 14.
    W. P. Jencks, Enforced general acid–base catalysis of complex reactions and its limitations, Acc. Chem. Res 9, 425–432 (1976).CrossRefGoogle Scholar
  15. 15.
    W. P. Jencks and J. M. Sayer, Structure and mechanism in complex general acid–base catalyzed reactions, Faraday Symp. Chem. Soc. 10, 41–49 (1975).CrossRefGoogle Scholar
  16. 16.
    P. D. Boyer, ed., The Enzymes,Vols. 3, 4, 5, 7, 8, 9, 3rd ed., Academic Press, New York, (1971–1973).Google Scholar
  17. 17.
    S. H. Mudd, in: Metabolic Conjugation and Metabolic Hydrolysis (W. H. Fishman, ed.), Vol. 3, pp. 297–350, Academic Press, New York (1973).Google Scholar
  18. 18.
    G. M. Maggiora and R.E. Christoffersen, Chapter 3 in this volume.Google Scholar
  19. 19.
    T. C. Bruice, Some pertinent aspects of mechanism as determined with small molecules, Annu. Rev. Biochem 45, 331–373 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    F. G. Bordwell, P. F. Wiley, and T. G. Mecca, Mode of solvent participation in solvolysis reactions at a tertiary carbon atom, J. Am. Chem. Soc 97, 132–136 (1975).CrossRefGoogle Scholar
  21. 21.
    D. J. McLennan, A case for the concerted S52 mechanism of nucleophilic aliphatic substitution, Acc. Chem. Res 9, 281–287 (1976).CrossRefGoogle Scholar
  22. 22.
    W. E. Buddenbaum and V. J. Shiner, Jr., 13C kinetic isotope effects and reaction coordinate motions in transition states for SN2 displacement reactions, Can. J. Chem. 54, 1146–1161 (1976).CrossRefGoogle Scholar
  23. 23.
    a) S. Seltzer and A. Zavitsas, Correlation of isotope effects in substitution reactions with nucleophilicities. Secondary a-deuterium isotope effect in the iodide-131-exchange of methyl-d3 iodide, Can. J. Chem. 45, 2023–2031 (1967). (b) C. M. Won and A. V. Willi, Kinetic deuterium isotope effects in the reactions of methyl iodide with azide and acetate ions in aqueous solution, J. Phys. Chem. 76, 427–432 (1972).CrossRefGoogle Scholar
  24. 24.
    K. C. Westaway, An unusually large a-secondary deuterium kinetic isotope effect, Tetrahedron Lett. 4229–4232 (1975).Google Scholar
  25. 25.
    E. K. Thornton and E. R. Thornton, Chapter 1 in this volume.Google Scholar
  26. 26.
    E. M. Arnett, Quantitative comparisons of weak organic bases, Prog. Phys. Org . Chem. 1, 223–403 (1963).CrossRefGoogle Scholar
  27. 27.
    J. P. Fox and W. P. Jencks, General acid and general base catalysis of the methoxyaminolysis of 1-acetyl-1,2,4-triazole, J. Am. Chem. Soc. 96, 1436–1449 (1974).CrossRefGoogle Scholar
  28. 28.
    J. L. Kurz, Transition states as acids and bases, Acc. Chem. Res. 5, 1–9 (1972).CrossRefGoogle Scholar
  29. 29.
    R. L. Schowen, Mechanistic deductions from solvent isotope effects, Prog. Phys. Org . Chem. 9, 275–332 (1972).CrossRefGoogle Scholar
  30. 30.
    C. G. Swain, D. A. Kuhn, and R. L. Schowen, Effect of structural changes in reactants on the position of hydrogen-bonding hydrogens and solvating molecules in transition states. The mechanism of tetrahydrofuran formation from 4-chlorobutanol, J. Am. Chem. Soc. 87, 1553–1561 (1965).CrossRefGoogle Scholar
  31. 31.
    T. H. Cromartie and C. G. Swain, Chlorine kinetic isotope effects in the cyclization of chloroalcohols, J. Am. Chem. Soc. 97, 232–233 (1975).CrossRefGoogle Scholar
  32. 32.
    J. K. Coward, R. Lok, and O. Takagi, General base catalysis in nucleophilic attack carbon of methylase model compounds, J. Am. Chem. Soc. 98, 1057–1059 (1976).PubMedCrossRefGoogle Scholar
  33. 33.
    Mihel,J. O. Knipe, J. K. Coward, and R. L. Schowen, to be published.Google Scholar
  34. 34.
    M. Choi and E. R. Thornton, A kinetic study of the hydrolysis of substituted N-benzoylimidazoles and N-benzoyl-N’-methylimidazolium ions in light and heavy water. Hydrogen bridging without rate-determining proton transfer as a model for enzymic charge-relay, J. Am. Chem. Soc. 96, 1428–1436 (1974).CrossRefGoogle Scholar
  35. 35.
    E. K. Thornton and E. R. Thornton, Chapter 1, and G. M. Maggiora and R. E. Christof-fersen, Chapter 3 in this volume.Google Scholar
  36. 36.
    P. Schuster, G. Zundel, and C. Sandorfy, eds., The Hydrogen Bond, Recent Developments in Theory and Experiments, North-Holland, Amsterdam (1976).Google Scholar
  37. 37.
    R. A. More O’Ferrall, The fractionation of hydrogen and deuterium isotopes in solutions of sodium methoxide, Chem. Commun. 1969, 114–115.Google Scholar
  38. 38.
    M. M. Kreevoy, T.-M. Liang, and K.-C. Chang, The structures and isotopic fractionation factors of complexes, AHA-, J. Am. Chem. Soc. 99, 5207–5209 (1977).CrossRefGoogle Scholar
  39. 39.
    S. S. Minor and R. L. Schowen, One-proton solvation bridge in intramolecular carboxylate catalysis of ester hydrolysis, J. Am. Chem. Soc. 95, 2279–2281 (1973).CrossRefGoogle Scholar
  40. 40.
    N. Gravitz and W. P. Jencks, Mechanism of the hydrolysis of a phthalinidium cation. Direct observation and trapping of the tetrahedral intermediate and the effect of strong acid on rate and equilibrium constants of the reversible reaction, J. Am. Chem. Soc. 96, 489–499 (1974).CrossRefGoogle Scholar
  41. 41.
    N. Gravitz and W. P. Jencks, The mechanism of formation and breakdown of amine tetrahedral addition compounds of phthalinidium cation. The relative leaving-group abilities of amines and alkoxide ions, J. Am. Chem. Soc. 96, 499–506 (1974).CrossRefGoogle Scholar
  42. 42.
    N. Gravitz and W. P. Jencks, Mechanism of general acid-base catalysis of the breakdown and formation of tetrahedral addition compounds from alcohols and a phthalinidium cation. Dependence of Bronsted slopes on alcohol acidity, J. Am. Chem. Soc. 96, 507–522 (1974).CrossRefGoogle Scholar
  43. 43.
    W. W. Cleland, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. 2, pp. 1–65, Academic Press, New York (1970).Google Scholar
  44. 44.
    P. D. Boyer, ed., The Enzymes, Vol. 3, 3rd ed., Academic Press, New York (1971).Google Scholar
  45. 45.
    L. Mascaro, Jr., R. Hörhammer, S. Eisenstein, L. K. Sellers, K. Mascaro, and H. G. Floss, Synthesis of methionine carrying a chiral methyl group and its use in determining the steric course of the enzymatic C-methylation of indolepyruvate during indolmycin biosynthesis, J. Am. Chem. Soc. 99, 273–274 (1977).PubMedCrossRefGoogle Scholar
  46. 46.
    Structure and function of proteins at the three-dimensional level, Cold Spring Harbor Symp. Quant. Biol. 36, (1972).Google Scholar
  47. 47.
    H. Fritz, H. Tschesche, L. J. Greene, and E. Truscheirt, eds., Proteinase Inhibitors, Proceedings of the 2nd International Research Conference, Springer-Verlag New York, Inc., New York (1974).Google Scholar
  48. 48.
    E. Reich, D. B. Rifkin, and E. Shaw, eds., Proteases and Biological Control, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1975).Google Scholar
  49. 49.
    T. H. Fife, Physical organic model systems and the problem of enzymatic catalysis, Adv. Phys. Org . Chem. 11, 1–122 (1975).CrossRefGoogle Scholar
  50. 50.
    D. M. Blow, Structure and mechanism of chymotrypsin, Acc. Chem. Res. 9, 145–152 (1976).CrossRefGoogle Scholar
  51. 51.
    D. M. Blow, J. J. Birktoft, and B. S. Hartley, Role of a buried acid group in the mechanism of action of chymotrypsin, Nature (London) 221 337–340 (1969).Google Scholar
  52. 52.
    A. R. Fersht, D. M. Blow, and J. Fastrez, Leaving-group specificity in the chymotrypsincatalyzed hydrolysis of peptides. A stereochemical interpretation, Biochemistry 12, 2035–2041 (1973).CrossRefGoogle Scholar
  53. 53.
    R. E. Williams and M. L. Bender, Substituent effects on the chymotrypsin-catalyzed hydrolysis of specific ester substrates, Can. J. Biochem. 49, 210–217 (1971).PubMedCrossRefGoogle Scholar
  54. 54.
    S. A. Bizzozero, W. K. Baumann, and H. Dutler, Kinetic investigation of the a-chymotrypsin-catalyzed hydrolysis of peptide-ester substrates. The relationship between the structure of the peptide moiety and reactivity, Eur. J. Biochem. 58, 167–176 (1975).PubMedCrossRefGoogle Scholar
  55. 55.
    F. E. Brot and M. L. Bender, Use of the specificity constant of a-chymotrypsin, J. Am. Chem. Soc. 91, 7187–7191 (1969).CrossRefGoogle Scholar
  56. 56.
    B. Zerner and M. L. Bender, Acyl-enzyme intermediates in the a-chymotrypsin catalyzed hydrolysis of “specific” substrates. The relative rates of hydrolysis of ethyl, methyl and p-nitrophenyl esters of N-acetyl-L-tryptophan, J. Am. Chem. Soc. 85, 356–358 (1963).CrossRefGoogle Scholar
  57. 57.
    H. F. Bundy and C. L. Moore, Chymotrypsin-catalyzed hydrolysis of m-, p-and o-nitroanilides of N-benzoyl-L-tyrosine, Biochemistry 5, 808–811 (1966).PubMedCrossRefGoogle Scholar
  58. 58.
    M. Philipp, R. M. Pollack, and M. L. Bender, Influences of leaving-group electronic effect on a-chrymotrypsin: Catalytic constants of specific substrates, Proc. Nat. Acad. Sci. USA 70, 517–520 (1973).CrossRefGoogle Scholar
  59. 59.
    T. Inagami, S. S. York, and A. Patchornik, An electrophilic mechanism in the chymotrypsin-catalyzed hydrolysis of anilide substrates, J. Am. Chem. Soc. 87, 126–127 (1965).PubMedCrossRefGoogle Scholar
  60. 60.
    C.-A. Bauer, R. C. Thompson, and E. R. Blout, The active centers of Strephomyces griseus protease 3 and a-chymotrypsin: Enzyme-substrate interactions remote from the scissile bond, Biochemistry 15, 1291–1295 (1976).PubMedCrossRefGoogle Scholar
  61. 61.
    R. J. Foster and C. Niemann, Reevaluation of kinetic constants of previously investigated specific substrates of a-chymotrypsin, J. Am. Chem. Soc. 77, 1886–1892 (1955).CrossRefGoogle Scholar
  62. 62.
    G. Hein and C. Niemann, An interpretation of the kinetic behavior of model substrates of a-chymotrypsin, Proc. Nat. Acad. Sci. USA 47, 1341–1355 (1961).PubMedCrossRefGoogle Scholar
  63. 63.
    G. D. Giles and C. F. Wells, Acid-base equilibria involving oxygen-containing molecules in dilute aqueous solution, Nature (London) 201, 606–607 (1969).CrossRefGoogle Scholar
  64. 64.
    G. D. Fasman, ed., Handbook of Biochemistry and Molecular Biology, Vol. 1, 3rd ed., CRC Press, Cleveland (1976).Google Scholar
  65. 65.
    M. Eigen and G. G. Hammes, Elementary steps in enzyme reactions, Adv. Enzymol. Relat. Subj. Biochem. 25, 1–38 (1963).Google Scholar
  66. 66.
    S. H. Smallcombe, B. Ault, and J. H. Richards, Magnetic resonance studies of proteinsmall molecule interactions. Dynamics of binding between N-acetyl-D-tryptophan and achymotrypsin, J. Am. Chem. Soc. 94, 4585–4590 (1972).PubMedCrossRefGoogle Scholar
  67. 67.
    M. Renard and A. R. Fersht, Anomalous pH dependence of k c „/K in enzyme reactions. Rate constants for the associations of chymotrypsin with substrates, Biochemistry 12, 4713–4718 (1973).PubMedCrossRefGoogle Scholar
  68. 68.
    C. G. Mitton, R. L. Schowen, M. Gresser, and J. Shapley, Isotope exchange in the basic methanolysis of aryl esters. Molecular interpretation of free energies, enthalpies and entropies of activation, J. Am. Chem. Soc. 91, 2036–2044 (1969).CrossRefGoogle Scholar
  69. 69.
    L. D. Kershner and R. L. Schowen, Proton transfer and heavy-atom reorganization in amide hydrolysis. Valence-isomeric transition states, J. Am. Chem. Soc 93, 2014–2024 (1971).CrossRefGoogle Scholar
  70. 70.
    R. L. Schowen, C. R. Hopper, and C. M. Bazikian, Substituent effects and solvent isotope effects in the basic methanolysis of amides, J. Am. Chem. Soc. 94, 3095–3097 (1972).CrossRefGoogle Scholar
  71. 71.
    C. R. Hopper, R. L. Schowen, K. S. Venkatasubban, and H. Jayaraman, Proton inventories of transition states for solvation catalysis and proton-transfer catalysis. Decomposition of the tetrahedral intermediate in amide methanolysis, J. Am. Chem. Soc. 95, 3280–3283 (1973).CrossRefGoogle Scholar
  72. 72.
    V. Gold and S. Grist, Deuterium solvent isotope effects on reactions involving the aqueous hydroxide ion, J. Chem. Soc. Perkin Trans. 2 1972, 89–95.Google Scholar
  73. 73.
    M. Phillipp and M. L. Bender, Is binding the rate-limiting step in acylation of a-chymotrypsin by specific substrates?, Nature (London) New Biol. 241, 44 (1973).CrossRefGoogle Scholar
  74. 74.
    P. W. Inward and W. P. Jencks, The reactivity of nucleophilic reagents with furoyl-chymotrypsin, J. Biol. Chem. 240, 1986–1996 (1965).PubMedGoogle Scholar
  75. 75.
    B. Zeeberg and M. Caplow, Transition-state charge distribution in reactions of acetyltyrosyl-chymotrypsin intermediate, J. Biol. Chem. 248, 5887–5891 1 1973 ).Google Scholar
  76. 76.
    C. B. Sawyer and J. F. Kirsch, Kinetic isotope effects for the chymotrypsin catalyzed hydrolysis of ethoxyl-180 labeled specific ester substrates, J. Am. Chem. Soc. 97, 1963–1964 (1975).PubMedCrossRefGoogle Scholar
  77. 77.
    M. L. Bender, G. E. Clement, F. J. Kézdy, and H. d’A. Heck, The correlation of the pH(pD) dependence and the stepwise mechanism of a-chymotrypsin-catalyzed reactions, J. Am. Chem. Soc. 86, 3680–3690 (1964).CrossRefGoogle Scholar
  78. 78.
    M. H. O’Leary and M. D. Kluetz, Nitrogen isotope effects on the chymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophanamide, J. Am. Chem. Soc. 94, 3585–3589 (1972).PubMedCrossRefGoogle Scholar
  79. 79.
    K. S. Venkatasubban, Proton bridges in enzymic and nonenzymic anide solvolysis, Ph.D. thesis, University of Kansas, Lawrence (1974).Google Scholar
  80. 80.
    J. P. Klinman, Kinetic isotope effects in enzymology, Adv. Enzymol. Relat. Areas Mol. Biol. in press.Google Scholar
  81. 81.
    C. B. Sawyer and J. F. Kirsch, Kinetic isotope effects for reactions of methyl formatemethoxyl-180, J. Am. Chem. Soc. 95, 7375–7381 (1973).CrossRefGoogle Scholar
  82. 82.
    E. R. Thornton, Solvent isotope effects in H2016 and H2O18, J. Am. Chem. Soc. 84, 2474–2475 (1962).CrossRefGoogle Scholar
  83. 83.
    R. A. More O’Ferrall, in: Proton-Transfer Reactions ( E. Caldin and V. Gold, eds.), Chapman & Hall, London (1975).Google Scholar
  84. 84.
    W. H. Saunders, Jr., Distinguishing between concerted and nonconcerted eliminations, Ace. Chem. Res. 9, 19–25 (1976).CrossRefGoogle Scholar
  85. 85.
    S. Scheirer, D. A. Kleier, and W. N. Lipscomb, Molecular orbital studies of enzyme activity: I: Charge relay system and tetrahedral intermediate in acylation of serine proteases, Proc. Nat. Acad. Sci. USA 72, 2606–2610 (1975).CrossRefGoogle Scholar
  86. 86.
    R. D. Gandour, G. M. Maggiora, and R. L. Schowen, Coupling of proton motions in catalytic activated complexes. Model potential-energy surfaces for hydrogen-bond chains, J. Am. Chem. Soc. 96, 6967–6979 (1974).CrossRefGoogle Scholar
  87. 87.
    R. Huber, D. Kukla, W. Bode, P. Schwager, K. Bartels, J. Deisenhofer, and W. Steigemann, Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution, J. Mol. Biol. 89, 73–101 (1974).PubMedCrossRefGoogle Scholar
  88. 88.
    H. G. Thode, R. L. Graham, and J. H. Ziegler, A mass spectrometer and the measurement of isotope exchange factors, Can. J. Res. Sect. B 23, 40–47 (1945).CrossRefGoogle Scholar
  89. 89.
    a) A. R. Fersht and M. Renard, pH dependence of chymotrypsin catalysis. Appendix: Substrate binding to dimeric a-chymotrypsin studied by X-ray diffraction and the equilibrium method, Biochemistry 13, 1416–1426 (1974). (b) A. R. Fersht and Y. Requena, Mechanism of the a-chymotrypsin-catalyzed hydrolysis of amides. pH dependence of k,, K m. Kinetic detection of an intermediate, J. Am. Chem. Soc. 93, 7079–7087 (1971).PubMedCrossRefGoogle Scholar
  90. 90.
    D. H. Kenyon and G. Steinman, Biochemical Predestination, McGraw-Hill, New York (1969).Google Scholar
  91. 91.
    A. R. Fersht, Catalysis, binding and enzyme-substrate complementarity, Proc. R. Soc. London Ser. B 187, 397–407 (1974).CrossRefGoogle Scholar
  92. 92.
    H. C. Froede and I. B. Wilson, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), Vol. 5, pp. 87–114, Academic Press, New York (1971).Google Scholar
  93. 93.
    T. L. Rosenberry, Acetylcholinesterase, Adv. Enzymol. Relat. Areas Mol. Biol. 43, 159–171 (1975).Google Scholar
  94. 94.
    T. L. Rosenberry, Catalysis by acetylcholinesterase: Evidence that the rate-limiting step with certain substrates precedes general acid-base catalysis, Proc. Nat. Acad. Sci. USA 72, 3834–3838 (1975).PubMedCrossRefGoogle Scholar
  95. 95.
    J. L. Hogg, Transition-state structures for catalysis by serine hydrolases and for related organic reactions, Ph.D. thesis, University of Kansas, Lawrence (1974).Google Scholar
  96. 96.
    J. P. Elrod, A comparative mechanistic study of a set of serine hydrolases using the proton inventory technique and beta-deuterium probe, Ph.D. thesis, University of Kansas, Lawrence (1975).Google Scholar
  97. 97.
    E. M. Arnett, T. Cohen, A. A. Bothner-By, R. D. Bushick, and G. Sowinski, A large beta-deuterium isotope effect in the protonation of acetophenone, Chem. Ind. (London) 1961, 473–474.Google Scholar
  98. 98.
    D. M. Quinn, Approaches to transition-state structure for various enzyme-catalyzed acyl transfers, Ph.D. thesis, University of Kansas, Lawrence (1977).Google Scholar
  99. 99.
    E. A. Halevi and Z. Margolin, Temperature dependence of the secondary isotope effect on aqueous alkaline ester hydrolysis, Proc. Chem. Soc. (London) 1964, 174.Google Scholar
  100. 100.
    G. M. Steinberg, M. L. Mednick, J. Maddox, R. Rice, and J. Cramer, A hydrophobic binding site in acetylcholinesterase, J. Med. Chem. 18, 1056–1061 (1975).CrossRefGoogle Scholar
  101. 101.
    N. Tanaka and E. R. Thornton, Isotope effects in hydrophobic binding measured by high-pressure liquid chromatography, J. Am. Chem. Soc. 98, 1617–1619 (1976).CrossRefGoogle Scholar
  102. 102.
    J. A. K. Harmony, R. H. Himes, and R. L. Schowen, The monovalent cation-induced association of formyltetrahydrofolate synthetase subunits: A solvent isotope effect, Biochemistry 14, 5379–5386 (1975).PubMedCrossRefGoogle Scholar
  103. 103.
    G. L. Cantoni, Biological methylation: Selected aspects, Annu. Rev. Biochem. 44, 335–451 (1975).CrossRefGoogle Scholar
  104. 104.
    G. D. Rock, J. H. Tong, and A. D. D’Iorio, A comparison of brain and liver catechol-Omethyltransferases, Can. J. Biochem. 48, 1326–1331 (1970).PubMedCrossRefGoogle Scholar
  105. 105.
    R. T. Borchardt and D. Thakker, Affinity labeling of catechol-O-methyltransferase with N-iodoacetyl-3,5-dimethoxy-4-hydroxyphenylethylamine, Biochem. Biophys. Res. Commun. 54, 1233–1239 (1973).PubMedCrossRefGoogle Scholar
  106. 106.
    R. T. Borchardt and D. Thakker, Catechol-O-methyltransferase. 6. Affinity labeling with N-haloacetyl-3,5-dimethoxy-4-hydroxyphenylalkylamines, J. Med. Chem. 18, 152–158 (1975).PubMedCrossRefGoogle Scholar
  107. 107.
    R. T. Borchardt and D. R. Thakker, Affinity labeling of catechol-O-methyltransferase by N-haloacetyl derivatives of 3,4-dimethoxy-4-hydroxyphenylethylamine. Kinetics of inactivation, Biochemistry 14, 4543–4551 (1975).PubMedCrossRefGoogle Scholar
  108. 108.
    Y. S. Wu, Synthesis and biological activity of analogs of S-adenosylmethionine and Sadenosylhomocysteine, Ph.D. thesis, University of Kansas, Lawrence (1975).Google Scholar
  109. 109.
    C. R. Creveling, N. Dalgard, H. Shimizu, and J. W. Daly, Catechol-O-methyltransferase. III. m-and p-O-methylation of catecholamines and their metabolites, Mol. Pharmacol. 6, 691–696 (1970).PubMedGoogle Scholar
  110. 110.
    C. R. Creveling, N. Morris, H. Shimizu, H. H. Ong, and J. Daly, Catechol-O-methyltransferase. IV. Factors affecting m-and p-methylation of substituted catechols, Mol. Pharmacol. 8, 398–409 (1972).PubMedGoogle Scholar
  111. 111.
    L. Flohe and K.-P. Schwabe, Kinetics of purified catechol-O-methyltransferase, Biochim. Biophys. Acta 220, 469–476 (1970).PubMedCrossRefGoogle Scholar
  112. 112.
    J. K. Coward, E. P. Slisz, and F. Y.-H. Wu, Kinetic studies on catechol-O-methyltransferase. Product inhibition and the nature of the catechol binding site, Biochemistry 12, 2291–2296 (1973).PubMedCrossRefGoogle Scholar
  113. 113.
    R. T. Borchardt, Catechol-O-methyltransferase. 1. Kinetics of tropolone inhibition, J. Med. Chem. 16, 377–382 (1973).PubMedCrossRefGoogle Scholar
  114. 114.
    R. T. Borchardt, Catechol-O-methyltransferase. 2. In vitro inhibition by substituted 8hydroxyquinolines, J. Med. Chem. 16, 382–387 (1973).PubMedCrossRefGoogle Scholar
  115. 115.
    R. T. Borchardt, Catechol-O-methyltransferase. 4. In vitro inhibition by 3-hydroxy-4pyrones, 3-hydroxy-2-pyindones and 3-hydroxy-4-pyridones, J. Med. Chem. 16, 581–583 (1973).Google Scholar
  116. 116.
    S. R. Hartshorn and V. J. Shiner, Jr., Calculation of H/ D, 12C/13C and ‘2C/’ 4C fractionation factors from valence force fields derived for a series of simple organic molecules, J. Am. Chem. Soc. 94, 9002–9012 (1972).CrossRefGoogle Scholar
  117. 117.
    L. B. Sims, A. Fry, L. T. Netherton, J. C. Wilson, K. D. Reppond, and S. W. Crook, Variations of heavy-atom kinetic isotope effects in SN2 displacement reactions, J. Am. Chem. Soc. 94, 1364–1365 (1972).CrossRefGoogle Scholar
  118. 118.
    V. J. Shiner, Jr., in: Isotope Effects in Chemical Reactions ( C. J. Collins and N. S. Bowman, eds.), pp. 90–159, Van Nostrand Reinhold, New York (1970).Google Scholar
  119. 119.
    M. J. Stern and M. Wolfsberg, Simplified procedure for the theoretical calculation of isotope effects involving large molecules, J. Chem. Phys 15, 4105–4124 (1966).CrossRefGoogle Scholar
  120. 120.
    M. F. Hegazi, Transition state structures for: I. Catechol-O-methyltransferase transmethylation. II. Water and acetate catalyzed hydrolyses of ethyl o-nitrophenyl oxalate, Ph.D. thesis, University of Kansas, Lawrence (1976).Google Scholar
  121. 121.
    M. F. Hegazi, R. T. Borchardt, and R. L. Showen, SN2-Like transition state for methyl transfer catalyzed by catechol-O-methyltransferase, J. Am. Chem. Soc. 98, 3048–3049 (1976).PubMedCrossRefGoogle Scholar
  122. 122.
    M. F. Hegazi, R. T. Borchardt, S. Osaki, and R. L. Schowen, in: New or Improved Syntheses, Methods or Techniques in Nucleic Acid Chemistry ( L. B. Townsend, ed.), Wiley, New York (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Mohamed F. Hegazi
    • 1
  • Daniel M. Quinn
    • 1
  • Richard L. Schowen
    • 1
  1. 1.Department of ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations