Advertisement

Scope and Limitations of the Concept of the Transition State

  • Elizabeth K. Thornton
  • Edward R. Thornton

Abstract

The study of biological reactions in ever-increasing numbers has raised intricate questions whose answers can best be sought through theories and experimental techniques which, until recently, were applied primarily to nonbiological (organic) systems. One such theory is that of absolute reaction rates (ART), commonly called transition-state theory (TST). TST has been evoked innumerable times in the treatment of experimental data and has provided the underlying concept for most mechanistic studies. Central to the theory is the transition state.

Keywords

Transition State Proton Transfer Isotope Effect Reaction Coordinate Substituent Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1(a).
    S.Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941);Google Scholar
  2. 1(b).
    K. J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill, New York (1969).Google Scholar
  3. 2.
    L. Melander, Isotope Effects on Reaction Rates, Ronald, New York (1960).Google Scholar
  4. 3.
    E. K. Thornton and E. R. Thornton, in: Isotope Effects in Chemical Reactions (C. J. Collins and N. S. Bowman, eds.), Chap. 4, pp. 213–285, Van Nostrand Reinhold, New York (1970).Google Scholar
  5. 4.
    H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald, New York (1966), Chap. 8, p. 131.Google Scholar
  6. 5.
    H. S. Johnston, Reference 4, pp. 118–119.Google Scholar
  7. 6.
    H. S. Johnston, Reference 4, pp. 129–130.Google Scholar
  8. 7.
    J. Kurz and L. Kurz, On the mechanism of proton transfer in solution. Factors determining whether the activated complex has an equilibrated environment, J. Am. Chem. Soc. 94, 4451–4461 (1972).CrossRefGoogle Scholar
  9. 8.
    R. Wolfenden and W. P. Jencks, Acetyl transfer reactions of l-acetyl-3-methylimidazolium chloride, J. Am. Chem. Soc. 83, 4390–4393 (1961).CrossRefGoogle Scholar
  10. 9.
    R. L. Schowen, in: Progress in Physical Organic Chemistry (A. Streitwieser, Jr., and R. W. Taft, eds.), Vol. 9, pp. 275–332, Wiley-lnterscience, New York (1972).Google Scholar
  11. 10.
    D. G. Truhlar and A. Kuppermann, A test of transition state theory against exact quantum mechanical calculations, Chem. Phys. Lett. 9, 269–272 (1971).CrossRefGoogle Scholar
  12. 11.
    A. Persky and M. Baer, Exact quantum mechanical study of kinetic isotope effects in the collinear reaction Cl + H2 -+ HCl + H. The H2/Di and the H2/T2 isotope effects, J. Chem. Phys. 60, 133–136 (1974).CrossRefGoogle Scholar
  13. 12.
    G. W. Koeppl, Comparison of quantum mechanical and transition state theory reaction probabilities for the reaction O + HBr —#x003E 01–1 + Br, J. Chem. Phys. 59, 2168–2169 (1973).CrossRefGoogle Scholar
  14. 13.
    G. W. Koeppl, Best ab initio surface transition state theory rate constants for the D + H, and H + D2 reactions, J. Chem. Phys. 59, 3425–3426 (1973).CrossRefGoogle Scholar
  15. 14.
    W. H. Miller, Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants, J. Chem. Phys. 61, 1823–1834 (1974).CrossRefGoogle Scholar
  16. 15.
    G. W. Koeppl, Alternate locations for the dividing surface of transition state theory. Implications for application of the theory, J. Am. Chem. Soc. 96, 6539–6548 (1974).CrossRefGoogle Scholar
  17. 16.
    R. P. Bell, Derivation of the fundamental expression of transition state theory, Trans. Faraday Soc. 66, 2770–2771 (1970).CrossRefGoogle Scholar
  18. 17.
    J. L. Kurz, Transition states as acids and bases, Acc. Chem. Res. 5, 1–9 (1972).CrossRefGoogle Scholar
  19. 18.
    F. H. Westheimer, in: Steric Effects in Organic Chemistry (M. S. Newman, ed.), Chap. 12, pp. 542–554, Wiley, New York (1956).Google Scholar
  20. 19.
    F. H. Westheimer and J. E. Mayer, The theory of the racemization of optically active derivatives of diphenyl, J. Chem. Phys. 14, 733–738 (1946).CrossRefGoogle Scholar
  21. 20.
    F. H. Westheimer, A calculation of the energy of activation for the racemization of 2,2’dibromo-4,4’-dicarboxydiphenyl, J. Chem. Phys. 15, 252–260 (1947).CrossRefGoogle Scholar
  22. 21.
    M. Rieger and F. H. Westheimer, The calculation and determination of the buttressing effect for the racemization of 2,2’,3,3’-tetraiodo-5,5’-dicarboxybiphenyl, J. Am. Chem. Soc. 72, 19–28 (1950).CrossRefGoogle Scholar
  23. 22.
    J. B. Hendrickson, Molecular geometry. I. Machine computation of the common rings, J. Am. Chem. Soc. 83, 4537–4547 (1961).CrossRefGoogle Scholar
  24. 23.
    K. B. Wiberg, A scheme for strain energy minimization. Application to the cycloalkanes, J. Am. Chem. Soc. 87, 1070–1078 (1965).CrossRefGoogle Scholar
  25. 24.
    N. L. Allinger, M. T. Tribble, M. A. Miller, and D. W. Wertz, Conformational analysis. LXIX. An improved force field for the calculation of the structures and energies of hydrocarbons, J. Am. Chem. Soc. 93, 1637–1648 (1971). See also the previous papers in this series.Google Scholar
  26. 25.
    E. M. Engler, J. D. Andose, and P. von R. Schleyer, Critical evaluation of molecular mechanics, J. Am. Chem. Soc. 95, 8005–8025 (1973).CrossRefGoogle Scholar
  27. 26.
    K. B. Wiberg, Physical Organic Chemistry, Wiley, New York (1964), pp. 370–373.Google Scholar
  28. 27.
    a) P. B. D. de la Mare, L. Fowden, E. D. Hughes, C. K. Ingold, and J. D. H. MacKie, Mechanism of substitution at a saturated carbon atom. Part XLIX. Analysis of steric and polar effects of alkyl groups in bimolecular nucleophilic substitution, with special reference to halogen exchange, J. Chem. Soc. 1955, 3200–3236; (b) I. Dostrovsky, E. D. Hughes, and C. K. Ingold, The role of steric hindrance. XXXII. Magnitude of steric effects, range of occurrence of steric and polar effects, and place of the Wagner rearrangement in nucleophilic substitution and elimination, J. Chem. Soc. 1946, 173–194.Google Scholar
  29. 28.
    C. K. Ingold, Quantitative study of steric hindrance, Q. Rev. (London) 11, 1–14 (1957).CrossRefGoogle Scholar
  30. 29.
    J. N. Murrell and G. L. Pratt, Statistical factors and the symmetry of transition states, Trans. Faraday Soc. 66, 1680–1684 (1970).CrossRefGoogle Scholar
  31. 30.
    M. Choi and E. R. Thornton, A kinetic study of the hydrolysis of substituted N-benzoylimidazoles and N-benzoyl-N’-methylimidazolium ions in light and heavy water. Hydrogen bridging without rate-determining proton transfer as a mechanism of general base catalyzed hydrolysis and a model for enzymic charge-relay, J. Am. Chem. Soc. 96, 1428–1436 (1974).CrossRefGoogle Scholar
  32. 31.
    A. H. Andrist, Concertedness: A function of dynamics or nature of the potential energy surface?, J. Org. Chem. 38, 1772–1773 (1973).CrossRefGoogle Scholar
  33. 32.
    E. K. Thornton and E. R. Thornton, Reference 3, p. 260.Google Scholar
  34. 33.
    B. W. Morrissey, Microscopic reversibility and detailed balance: An overview, J. Chem. Educ. 52, 296–298 (1975).CrossRefGoogle Scholar
  35. 34.
    B. H. Mahan, Microscopic reversibility and detailed balance: An analysis, J. Chem. Educ. 52, 299–302 (1975).CrossRefGoogle Scholar
  36. 35.
    R. M. Krupka, H. Kaplan, and K. J. Laidler, Kinetic consequences of the principle of microscopic reversibility, Trans. Faraday Soc. 62, 2754–2759 (1966).CrossRefGoogle Scholar
  37. 36.
    H. Eyring and M. Polanyi, On simple gas reactions, Z. Phys. Chem. Abt. B 12, 279–311 (1931).Google Scholar
  38. 37.
    F. London, Quantum-mechanical explanation of activation, Z. Elektrochem. 35, 552–555 (1929).Google Scholar
  39. 38.
    J. E. Hulse, R. A. Jackson, and J. S. Wright, Energy surfaces, trajectories, and the reaction coordinate, J. Chem. Educ. 51, 78–82 (1974).CrossRefGoogle Scholar
  40. 39.
    R. D. Gandour, G. M. Maggiora, and R. L. Schowen, Coupling of proton motions in catalytic activated complexes. Model potential-energy surfaces for hydrogen-bond chains, J. Am. Chem. Soc. 96, 6967–6979 (1974).CrossRefGoogle Scholar
  41. 40.
    O. Sinanoglu, The C-potential surface for predicting conformations of molecules in solution, Theor. Chim. Acta 33, 279–284 (1974).CrossRefGoogle Scholar
  42. 41.
    D. M. Silver, Character of the least-energy trajectory near the saddle-point on H3 potential surface, J. Chem. Phys. 57, 586–587 (1972).CrossRefGoogle Scholar
  43. 42.
    E. A. McCullough, Jr., and D. M. Silver, Reaction path properties at critical points on potential surfaces, J. Chem. Phys. 62, 4050–4052 (1975).CrossRefGoogle Scholar
  44. 43.
    R. P. Bell, The Proton in Chemistry, 2nd ed., Cornell University Press, Ithaca, N.Y. (1973), Chap. 12.Google Scholar
  45. 44.
    R. P. Bell, Recent advances in the study of kinetic hydrogen isotope effects, Chem. Soc. Rev. 3, 513–544 (1974).CrossRefGoogle Scholar
  46. 45.
    M. D. Harmony, Quantum mechanical tunnelling in chemistry, Chem. Soc. Rev. 1, 211–228 (1972).CrossRefGoogle Scholar
  47. 46.
    H. S. Johnston, Reference 4, pp. 190–197.Google Scholar
  48. 47.
    E. F. Caldin, Tunneling in proton-transfer reactions in solution, Chem. Rev. 69, 135–156 (1969).CrossRefGoogle Scholar
  49. 48.
    M. J. Stern and R. E. Weston, Jr., Phenomenological manifestations of quantum-mechanical tunneling. I. Curvature in Arrhenius plots, J. Chem. Phys. 60, 2803–2807 (1974).CrossRefGoogle Scholar
  50. 49.
    M. J. Stern and R. E. Weston, Jr., Phenomenological manifestations of quantum-mechanical tunneling. II. Effect on Arrhenius preexponential factors for primary hydrogen kinetic isotope effects, J. Chem. Phys. 60, 2808–2814 (1974).CrossRefGoogle Scholar
  51. 50.
    E. F. Caldin and S. Mateo, Kinetic isotope effects and tunnelling in the proton-transfer reaction between 4-nitrophenylnitromethane and tetramethylguanidine in various aprotic solvents, J. Chem. Soc. Faraday Trans. 1, 71, 1876–1904 (1975).CrossRefGoogle Scholar
  52. 51.
    J. Banger, A. Jaffe, A. Lin, and W. H. Saunders, Jr., Carbon isotope effects on proton transfers from carbon, and the question of hydrogen tunneling, J. Am. Chem. Soc. 97, 7177–7178 (1975).CrossRefGoogle Scholar
  53. 52.
    D. G. Truhlar and A. Kuppermann, Exact tunneling calculations, J. Am. Chem. Soc. 93, 1840–1851 (1971).CrossRefGoogle Scholar
  54. 53.
    M. Simonyi and 1. Mayer, Barrier width: A powerful parameter for hydrogen transfer reactions, J. Chem. Soc. Chem. Commun. 1975, 695–696.Google Scholar
  55. 54.
    J. E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, Wiley, New York (1963), p. 119.Google Scholar
  56. 55.
    D. Y. Curtin, Stereochemical control of organic reactions. Differences in behavior of diastereomers. I. Ethane derivatives. The cis effect, Rec. Chem. Prog. 15, III-128 (1954).Google Scholar
  57. 56.
    E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison. Conformational Analysis, Wiley, New York (1967), p. 28.Google Scholar
  58. 57.
    J. H. Murrell and K. J. Laidler, Symmetries of activated complexes, Trans. Faraday Soc. 64, 371–377 (1968).CrossRefGoogle Scholar
  59. 58.
    J. W. McIver, Jr., The structure of transition states: Are they symmetric, Arc. Chem. Res. 7, 72–77 (1974).CrossRefGoogle Scholar
  60. 59.
    J. W. McIver, Jr., and R. E. Stanton, Symmetry selection rules for transition states, J. Am. Chem. Soc. 94, 8618–8620 (1972).CrossRefGoogle Scholar
  61. 60.
    a) R. E. Stanton and J. W. McIver, Group theoretical selection rules for the transition states of chemical reactions, J. Am. Chem. Soc. 97, 3632–3646 (1975); (h) P. Pechukas, On simple saddle points of a potential surface, the conservation of nuclear symmetry along paths of steepest descent, and the symmetry of transition states, J. Chem. Phys. 64, 15161521 (1976).Google Scholar
  62. 61.
    a) R. G. Pearson, Symmetry rules for predicting the course of chemical reactions, Theor. Chim. Acta 16, 107–110 (1970); (b) R. G. Pearson, Symmetry rules for chemical reactions, Ace. Chem. Res. 4, 152–160 (1971); (c) R. G. Pearson, Orbital symmetry rules for unimolecular reactions, J. Am. Chem. Soc. 94, 8287–8293 (1972).Google Scholar
  63. 62.
    R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press, New York (1971).Google Scholar
  64. 63.
    R. F. W. Bader, Vibrationally induced perturbations in molecular electron distributions, Can. J. Chem. 40, 1164–1175 (1962).CrossRefGoogle Scholar
  65. 64.
    J. Hayami, N. Tanaka, N. Hihara, and A. Kaji, Nucleophile-substrate complex in solution. Detection of chloride-organic chloride association and the potential role of the complexes in the SN2 reaction, Tetrahedron Lett. 1973, 385–388.Google Scholar
  66. 65.
    C. G. Swain and W. P. Langsdorf, Jr., Concerted displacement reactions. VI. m-and p-Substituent effects as evidence for a unity of mechanism in organic halide reactions, J. Am. Chem. Soc. 73, 2813–2819 (1951).CrossRefGoogle Scholar
  67. 66.
    E. R. Thornton, A simple theory for predicting the effects of substituent changes on transition-state geometry, J. Am. Chem. Soc. 89, 2915–2927 (1967).CrossRefGoogle Scholar
  68. 67.
    D. A. Winey and E. R. Thornton, Elimination mechanisms. Deuteroxide/hydroxide isotope effects as a measure of proton transfer in the transition states for E2 elimination of 2-(p-trimethylammoniophenyl) ethyl ‘onium ions and halides. Mapping of the reaction-coordinate motion, J. Am. Chem. Soc. 97, 3102–3108 (1975).CrossRefGoogle Scholar
  69. 68.
    R. A. More O’Ferrall, Relationships between E2 and E1cB mechanisms of ß-elimination, J. Chem. Soc. B 1970, 274–277.Google Scholar
  70. 69(a).
    W. P. Jencks, General acid-base catalysis of complex reactions in water, Chem. Rev. 72, 705–718 (1972);Google Scholar
  71. 69(b).
    T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper and Row, New York (1976), pp. 247, 409.Google Scholar
  72. 70.
    E. R. Thornton, Solvolysis Mechanisms, Ronald, New York (1964), pp. 42–44.Google Scholar
  73. 71.
    J. E. Leffler and E. Grunwald, Reference 54, Chap. 2.Google Scholar
  74. 72.
    E. R. Thornton, Reference 70, p. 183.Google Scholar
  75. 73.
    K. J. Laidler, Reference 1(b), Chap. 3.Google Scholar
  76. 74.
    a) A. J. Parker, Protic-dipolar aprotic solvent effects on rates of bimolecular reactions, Chem. Rev. 69, 1–32 (1969); (b) M. H. Abraham, in: Progress in Physical Organic Chemistry (A. Streitwieser, Jr., and R. W. Taft, eds.), Vol. 11, pp. 1–87, Wiley-Interscience, New York (1974).Google Scholar
  77. 75.
    L. L. Schaleger and F. A. Long, in: Advances in Physical Organic Chemistry (V. Gold, ed.), Vol. 2, pp. 1–33, Academic Press, New York (1963).Google Scholar
  78. 76.
    H. M. Humphreys and L. P. Hammett, Rate measurements on fast reactions in the stirred flow reactor; the alkaline hydrolysis of methyl and ethyl formate, J. Am. Chem. Soc. 78. 521–524 (1956).CrossRefGoogle Scholar
  79. 77.
    F. P. Price, Jr., and L. P. Hammett, Effect of structure on reactivity of carbonyl compounds; temperature coefficients of rate of formation of several semicarbazones, J. Am. Chem. Soc. 63, 2387–2393 (1941).CrossRefGoogle Scholar
  80. 78(a).
    C. G. Swain and E. R. Thornton, Calculated isotope effects for reactions of lyonium ion in mixtures of light and heavy water, J. Am. Chem. Soc. 83, 3884–3889 (1961);Google Scholar
  81. 78(b).
    C. G. Swain and E. R. Thornton, Calculated isotope effects for reactions of lyoxide ion or water in mixtures of light and heavy water, J. Am. Chem. Soc. 83, 3890–3896 (1961).Google Scholar
  82. 79.
    F. A. Long, J. G. Pritchard, and F. E. Stafford, Entropies of activation and mechanism for the acid-catalyzed hydrolysis of ethylene oxide and its derivatives, J. Am. Chem. Soc. 79, 2362–2364 (1957).Google Scholar
  83. 80(a).
    R. W. Taft, Jr., E. L. Purlee, P. Riesz, and C. A. DeFazio, rc-Complex and carbonium ion intermediates in olefin hydration and El elimination from t-carbinols. II. Trimethylene, methylenecyclobutane, triptene, and the effect of acidity on their hydration rate, J. Am. Chem. Soc. 77, 1584–1590 (1955);Google Scholar
  84. 80(b).
    R. H. Boyd, R. W. Taft, Jr., A. P. Wolf, and D. R. Christman, Studies on the mechanism of olefin-alcohol interconversion. The effect of acidity on the O’s exchange and dehydration of t-alcohols, J. Am. Chem. Soc. 82, 4729–4736 (1960).Google Scholar
  85. 81.
    M. M. Kreevoy, in: Investigation of Rates and Mechanisms of Reactions, 2nd ed. (S. L. Friess, E. S. Lewis, and A. Weissberger, eds.), Vol. VIII, Part II, pp. 1361–1406, WileyInterscience, New York (1963).Google Scholar
  86. 82.
    M. H. Abraham, D. H. Buisson, and R. A. Schulz, Activation parameters for the solvolysis of t-butyl chloride in water-ethanol mixtures. Glycine as a transition state model, J. Chem. Soc. Chem. Commun. 1975, 693–694.Google Scholar
  87. 83.
    M. I. Page and W. P. Jencks, Entropie contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proc. Nat. Acad. Sci. USA 68, 1678–1683 (1971).PubMedCrossRefGoogle Scholar
  88. 84.
    J. W. Larsen, Entropy contributions to rate accelerations of intramolecular reactions in water vs. non-structured solvents, Biochem. Biophys. Res. Commun. 50, 839–845 (1973).PubMedCrossRefGoogle Scholar
  89. 85.
    J. G. Martin and J. M. W. Scott, Thermodynamic parameters and solvent isotope effects as mechanistic criteria in the neutral hydrolysis of some alkyl trifluoroacetates in water and deuterium oxide, Chem. Ind. (London) 1967, 665.Google Scholar
  90. 86.
    T. C. Bruice and S. J. Benkovic, A comparison of the bimolecular and intramolecular nucleophilic catalysis of the hydrolysis of substituted phenyl acylates by the dimethylamino group, J. Am. Chem. Soc. 85, 1–8 (1963).CrossRefGoogle Scholar
  91. 87.
    T. Higuchi, L. Eberson, and A. K. Herd, The intramolecular facilitated hydrolytic rates of methyl substituted succinanilic acids, J. Am. Chem. Soc. 88, 3805–3808 (1966).PubMedCrossRefGoogle Scholar
  92. 88.
    W. P. Cane and D. Wetlaufer, Abstr. Am. Chem. Soc. 152d Ann. Meeting 1966, HOC; W. P. Cane, Homologousacyl Chymotrypsins, Diss. Abstr. B. 28, 4038 (1968).Google Scholar
  93. 89.
    W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York (1969), Chap. 5, p. 298.Google Scholar
  94. 90.
    T. D. Singh and R. W. Taft, Novel activation parameters and catalytic constants in the aminolysis and methanolysis of p-nitrophenyl trifluoroacetate, J. Am. Chem. Soc. 97, 3867–3869 (1975).CrossRefGoogle Scholar
  95. 91.
    G. Kohnstam, in: Advances in Physical Organic Chemistry (V. Gold, ed.), Vol. 5, pp. 121172, Academic Press, New York (1967).Google Scholar
  96. 92.
    K. M. Koshy, R. E. Robertson, and W. M. J. Strachan, Pseudo-thermodynamic parameters and isotope effects for hydrolysis of a series of benzyl chlorides in water, Can. J. Chem. 51, 2958–2962 (1973).CrossRefGoogle Scholar
  97. 93.
    E. R. Thornton, Reference 70. p. 192.Google Scholar
  98. 94.
    W. J. le Noble, in: Progress in Physical Organic Chemistry (A. Streitwieser, Jr., and R. W. Taft, eds.), Vol. 5, pp. 207–330, Wiley-Interscience, New York (1967).Google Scholar
  99. 95.
    W. J. le Noble, H. Guggisberg, T. Asano, L. Cho, and C. A. Grob, Pressure effects in solvolysis and solvolytic fragmentation. A correlation of activation volume with concertedness, J. Am. Chem. Soc. 84, 920–924 (1976).CrossRefGoogle Scholar
  100. 96.
    S. W. Benson, Thermochemical Kinetics, 2nd ed., Wiley-Interscience, New York (1976).Google Scholar
  101. 97.
    S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O’Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Additivity rules for the estimation of thermochemical properties, Chem. Rev. 69, 279–324 (1969).Google Scholar
  102. 98.
    D. R. Herschbach, H. S. Johnston, K. S. Pitzer, and R. E. Powell, Theoretical pre-exponential factors for twelve bimolecular reactions, J. Chem. Phys. 25, 736–741 (1956).CrossRefGoogle Scholar
  103. 99.
    V. J. Shiner, Jr., in: Reference 3, Chap. 2.Google Scholar
  104. 100.
    J. C. Harris and J. L. Kurz, A direct approach to the prediction of substituent effects on transition state structure, J. Am. Chem. Soc. 92, 349–355 (1970).CrossRefGoogle Scholar
  105. 101.
    J. L. Kurz and Y.-N. Lee, The acidity of water in the transition state for methyl tosylate hydrolysis, J. Am. Chem. Soc. 97, 3841–3842 (1975).CrossRefGoogle Scholar
  106. 102.
    H. B. Dunford, J. E. Critchlow, R. J. Maguire, and R. Roman, The advantages of transition state and group acid dissociation constants for pH-dependent enzyme kinetics, J. Theor. Biol. 48, 283–298 (1974).PubMedCrossRefGoogle Scholar
  107. 103.
    D. M. Bishop and K. J. Laidler, Statistical factors for chemical reactions, Trans. Faraday Soc. 66, 1685–1687 (1970).CrossRefGoogle Scholar
  108. 104.
    K. J. Laidler, Reference 1(b), Chap. 4.Google Scholar
  109. 105.
    R. L. Schowen, Reference 9, pp. 317–321.Google Scholar
  110. 106.
    R. Breslow, Organic Reaction Mechanisms, 2nd ed., Benjamin, Reading, Mass. (1969), pp. 38–40.Google Scholar
  111. 107.
    E. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston, New York (1959).Google Scholar
  112. 108.
    P. Y. Bruice and T. C. Bruice, The lack of concertedness in the general acid—base catalysis of the enolization of oxalacetic acid. A case for stepwise nucleophilic—general base catalysis, J. Am. Chem. Soc. 98, 844–845 (1976).CrossRefGoogle Scholar
  113. 109.
    A. F. Hegarty and W. P. Jencks, Bifunctional catalysis of the enolization of acetone, J. Am. Chem. Soc. 97, 7188–7189 (1975).CrossRefGoogle Scholar
  114. 110.
    A. Hall and J. R. Knowles, The uncatalyzed rates of enolization of dihydroxyacetone phosphate and of glyceraldehyde 3-phosphate in neutral aqueous solution. The quantitative assessment of the effectiveness of an enzyme catalyst, Biochemistry 14, 4348–4352 (1975).PubMedCrossRefGoogle Scholar
  115. 111.
    M. Klotz, Free energy diagrams and concentration profiles for enzyme-catalyzed reactions, J. Chem. Educ. 53, 159–160 (1976).PubMedCrossRefGoogle Scholar
  116. 112.
    J. E. Leffler and E. Grunwald, Reference 54, p. 19.Google Scholar
  117. 113.
    E. Hamori, Illustration of free energy changes in chemical reactions, J. Chem. Educ. 52, 370–373 (1975).CrossRefGoogle Scholar
  118. 114.
    R. C. Dougherty, J. Dalton, and J. D. Roberts, SN2 reactions in the gas phase. Structure of the transition state, Org. Mass Spectrom. 8, 77–79 (1974).CrossRefGoogle Scholar
  119. 115(a).
    H. B. Bürgi, J. D. Dunitz, and E. Shefter, Geometrical reaction coordinates. 11. Nucleophilic addition to a carbonyl group, J. Am. Chem. Soc. 95, 5065–5067 (1973);Google Scholar
  120. 115(b).
    H. Bürgi, Stereochemistry of reaction paths as determined from crystal structure data—a relationship between structure and energy, Angew. Chem. Int. Ed. Engl. 14, 460–473 (1975).Google Scholar
  121. 116.
    J. A. Hirsch, Concepts in Theoretical Organic Chemistry, Allyn and Bacon, Boston (1974), Chap. 4.Google Scholar
  122. 117.
    L. P. Hammett, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1970), Chap. l 1.Google Scholar
  123. 118.
    J. A. Pople and M. Gordon, Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments, J. Am. Chem. Soc. 89, 4253–4261 (1967).CrossRefGoogle Scholar
  124. 119.
    E. D. Hughes and C. K. Ingold, Mechanism of substitution at a saturated carbon atom. IV. Discussion of constitutional and solvent effects on the mechanism, kinetics, velocity, and orientation of substitution, J. Chem. Soc. 1935, 244–255.Google Scholar
  125. 120.
    C. G. Swain, D. A. Kuhn, and R. L. Schowen, Effect of structural changes in reactants on the position of hydrogen-bonding hydrogens and solvating molecules in transition states. The mechanism of tetrahydrofuran formation from 4-chlorobutanol, J. Am. Chem. Soc. 87, 1553–1561 (1965).CrossRefGoogle Scholar
  126. 121.
    R. M. Pollack and M. Brault, Synergism of the effect of solvent and of general base catalysis in the hydrolysis of a Schiff base, J. Am. Chem. Soc. 98, 247–248 (1976).CrossRefGoogle Scholar
  127. 122(a).
    W. P. Jencks, in: Advances in Enzymology (A. Meister, ed.), Vol. 43, pp. 219–410, Wiley, New York (1975);Google Scholar
  128. 122(b).
    W. P. Jencks, Approximation, chelation, and enzymic catalysis, Paabs Revista 2, 235–243 (1973), and references therein.Google Scholar
  129. 123.
    W. P. Jencks, Reference 89, Chaps. 1–9.Google Scholar
  130. 124.
    T. C. Bruice and U. K. Pandit, Intramolecular models depicting the kinetic importance of fit in enzymic catalysis, Proc. Nat. Acad. Sci. USA 46, 402–404 (1960).PubMedCrossRefGoogle Scholar
  131. 125.
    D. R. Storm and D. E. Koshland, A source for the special catalytic power of enzymes: Orbital steering, Proc. Nat. Acad. Sci. USA 66, 445–452 (1970).PubMedCrossRefGoogle Scholar
  132. 126.
    A. Dafforn and D. E. Koshland, Proximity, entropy and orbital steering, Biochem. Biophys. Res. Commun. 52, 779–785 (1973).PubMedCrossRefGoogle Scholar
  133. 127.
    T. C. Bruice, Is “orbital steering” a new concept?, Nature (London) 237, 335 (1972).CrossRefGoogle Scholar
  134. 128.
    T. C. Bruice, in: Annual Review of Biochemistry (E. S. Snell, ed.), Vol. 45, pp. 331–373, Annual Reviews, Inc., Palo Alto, Calif. (1976).Google Scholar
  135. 129.
    W. P. Jencks, Reference 89, Chap. 5.Google Scholar
  136. 130.
    W. P. Jencks and M. I. Page, “Orbital steering,” entropy, and rate accelerations, Biochem. Biophys. Res. Commun. 57, 887–891 (1974).Google Scholar
  137. 131.
    C. Delisi and D. M. Crothers, The contribution of proximity and orientation to catalytic reaction rates, Biopolymers 12, 1689–1704 (1973).CrossRefGoogle Scholar
  138. 132.
    L. Pauling, Molecular architecture and biological reactions, Chem. Eng. News 24, 13751377 (1946).Google Scholar
  139. 133.
    J. C. Powers, B. L. Baker, J. Brown, and B. K. Chelm, Inhibition of chymotrypsin Aa with N-acyl-and N-peptidyl-2-phenylethylamines. Subsite binding free energies, J. Am. Chem. Soc. 96, 238–243 (1974).PubMedCrossRefGoogle Scholar
  140. 134.
    D. W. Ingles and J. R. Knowles, The stereospecificity of a-chymotrypsin, Biochem. J. 108, 561–569 (1968).PubMedGoogle Scholar
  141. 135.
    A. R. Fersht, Catalysis, binding and enzyme-substrate complementarity, Proc. R. Soc. London Ser. B 187, 397–407 (1974).CrossRefGoogle Scholar
  142. 136.
    R. Breslow, Reference 106, pp. 64–65.Google Scholar
  143. 137.
    R. Wolfenden, Transition state analogs for enzyme catalysis, Nature (London) 223, 704–705 (1969).CrossRefGoogle Scholar
  144. 138.
    R. Wolfenden, Analog approaches to the structure of the transition state in enzyme reactions, Acc. Chem. Res. 5, 10–18 (1972).CrossRefGoogle Scholar
  145. 139.
    G. E. Lienhard, Enzymatic catalysis and transition-state theory, Science 180, 149–154 (1973).PubMedCrossRefGoogle Scholar
  146. 140.
    K. Schray and J. P. Klinman, The magnitude of enzyme transition state analog binding constants, Biochem. Biophys. Res. Commun. 57, 641–648 (1974).PubMedCrossRefGoogle Scholar
  147. 141.
    R. Wolfenden, Chapter 15 in this volume.Google Scholar
  148. 142.
    G. L. Kenyon and J. A. Fee, in: Progress in Physical Organic Chemistry (A. Streitwieser and R. W. Taft, eds.), Vol. 10, pp. 381–410, Wiley-Interscience, New York (1973).Google Scholar
  149. 143.
    J. E. Leffler and E. Grunwald, Reference 54, Chaps. 6 and 7.Google Scholar
  150. 144.
    C. D. Johnson, Linear free energy relationships and the reactivity-selectivity principle, Chem. Rev. 75, 755–765 (1975), and references therein.Google Scholar
  151. 145.
    W. P. Jencks, Reference 89, pp. 195–197.Google Scholar
  152. 146.
    E. H. Cordes and W. P. Jencks, General acid catalysis of semicarbazone formation, J. Am. Chem. Soc. 84, 4319–4328 (1962).CrossRefGoogle Scholar
  153. 147.
    L. P. Hammett and H. L. Pfluger, The rate of addition of methyl esters to trimethylamine, J. Am. Chem. Soc. 55, 4079–4089 (1933); L. P. Hammett, Some relations between reaction rates and equilibrium constants, Chem. Rev. 17, 125–136 (1935).CrossRefGoogle Scholar
  154. 148.
    J. A. Hirsch, Reference 116, Chap. 6.Google Scholar
  155. 149.
    S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, in: Progress in Physical Organic Chemistry (A. Streitwieser, Jr., and R. W. Taft, eds.), Vol. 10, pp. 1–80, Wiley-Interscience, New York (1973).Google Scholar
  156. 150.
    T. B. Grindley and A. R. Katritzky, A direct relation of sigma constants to the energy scale, Tetrahedron Leu. 1972, 2643–2646.Google Scholar
  157. 151.
    C. G. Swain and E. C. Lupton, Jr., Field and resonance components of substituent effects, J. Am. Chem. Soc. 90, 4328–4337 (1968).CrossRefGoogle Scholar
  158. 152.
    M. Sjöström and S. Wold, Statistical analysis of the Hammett equation, Chem. Scr. 6, 114–121 (1974).Google Scholar
  159. 153.
    L. P. Hammett, Reference 117, Chaps. 11 and 12.Google Scholar
  160. 154.
    O. Exner, in: Progress in Physical Organic Chemistry (A. Streitwieser, Jr., and R. W. Taft, eds.), Vol. 10, pp. 411–482, Wiley-Interscience, New York (1973).Google Scholar
  161. 155.
    J. E. Leffler, The interpretation of enthalpy and entropy data, J. Org. Chem. 31, 533 537 (1966).Google Scholar
  162. 156.
    R. L. Schowen, Isergonic relations and their significance for catalysis, J. Pharm. Sci. 56, 931–943 (1967).PubMedCrossRefGoogle Scholar
  163. 157.
    L. G. Hepler, Thermodynamic analysis of the Hammett equation, the temperature dependence of p, and the isoequilibrium (isokinetic) relationship, Can. J. Chem. 49, 2803–2807 (1971).CrossRefGoogle Scholar
  164. 158.
    J. N. Br¢nsted and K. Pedersen, The catalytic decomposition of nitramide and its physicochemical applications, Z. Phys. Chem. 108, 185–235 (1924).Google Scholar
  165. 159.
    R. P. Bell, Reference 43, Chap. 10.Google Scholar
  166. 160.
    A. J. Kresge, What makes proton transfer fast?, Acc. Chem. Res. 8, 354–360 (1975).CrossRefGoogle Scholar
  167. 161.
    A. J. Kresge, The Bronsted relation—recent developments, Chem. Soc. Rev. 2, 475–503 (1973); M. Eigen, Proton transfer, acid-base catalysis, and enzymatic hydrolysis, Part I: Elementary processes, Angew. Chem. Int. Ed. Engl. 3, 1–19 (1964); R. A. Marcus, Theoretical relations among rate constants, barriers, and Bronsted slopes of chemical reactions, J. Phys. Chem. 72, 891–899 (1968); J. R. Murdoch, Rate-equilibria relationships and proton-transfer reactions, J. Am. Chem. Soc. 94, 4410–4418 (1972).Google Scholar
  168. 162(a).
    R. P. Bell, Reference 43, p. 207;Google Scholar
  169. 162(b).
    R. P. Bell, The development of ideas about proton transfer reactions, Faraday Symp. Chem. Soc. 10, 7–19 (1975);Google Scholar
  170. 162(c).
    R. P. Bell, Potential energy curves and Bronsted exponents in proton-transfer reactions, J. Chem. Soc. Faraday Trans. 272, 2088–2094 (1976).Google Scholar
  171. 163.
    R. Barnett and W. P. Jencks, Rate-limiting diffusion-controlled proton transfer in an acetyl transfer reaction, J. Am. Chem. Soc. 90, 4199–4200 (1968).CrossRefGoogle Scholar
  172. 164.
    F. G. Bordwell, W. J. Boyle, Jr., J. A. Hautala, and K. C. Yee, Bronsted coefficients larger than 1 and less than 0 for proton removal from carbon acids, J. Am. Chem. Soc. 91, 40024003 (1969).Google Scholar
  173. 165.
    F. G. Bordwell and W. J. Boyle, Jr., Kinetic isotope effects for nitroalkanes and their relationship to transition-state structure in proton-transfer reactions, J. Am. Chem. Soc. 97, 3447–3452 (1975).CrossRefGoogle Scholar
  174. 166.
    C. G. Swain and C. B. Scott, Quantitative correlation of relative rates. Comparison of hydroxide ion with other nucleophilic reagents toward alkyl halides, esters, epoxides, and acyl halides, J. Am. Chem. Soc. 75, 141–147 (1953).CrossRefGoogle Scholar
  175. 167.
    J. A. Hirsch, Reference 116, Chap. 8.Google Scholar
  176. 168.
    T. H. Lowry and K. S. Richardson, Reference 69(b), pp. 185–190.Google Scholar
  177. 169.
    G. S. Hammond, A correlation of reaction rates, J. Am. Chem. Soc. 77, 334–338 (1955).CrossRefGoogle Scholar
  178. 170(a).
    M. Wolfsberg, Theoretical evaluation of experimentally observed isotope effects, Ace. Chem. Res. 5, 225–233 (1972);Google Scholar
  179. 170(b).
    F. H. Westheimer, The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium, Chem. Rev. 61, 265–273 (1961);Google Scholar
  180. 170(c).
    J. Bigeleisen and M. Wolfsberg, in: Advances in Chemical Physics (I. Prigogine, ed.), Vol. 1, pp. 15–76, Wiley-Interscience, New York (1958).Google Scholar
  181. 171.
    J. Klinman, Chapter 4 in this volume.Google Scholar
  182. 172.
    M. M. Kreevoy, The exposition of isotope effects on rates and equilibria, J. Chem. Educ. 41, 636–638 (1964).CrossRefGoogle Scholar
  183. 173.
    K. B. J. Schowen and M. H. O’Leary, Chapters 6 and 7, respectively, in this volume.Google Scholar
  184. 174.
    F. G. Bordwell and W. J. Boyle, Jr., Kinetic isotope effects as guides to transition-state structures in deprotonation reactions, J. Am. Chem. Soc. 93, 512–514 (1971).CrossRefGoogle Scholar
  185. 175.
    J. Hine, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1962), pp. 69, 380 382.Google Scholar
  186. 176.
    J. Hine, The principle of least motion. Application to reactions of resonance-stabilized species, J. Org. Chem. 31, 1236–1244 (1966).CrossRefGoogle Scholar
  187. 177.
    O. S. Tee, J. A. Altmann, and K. Yates, Application of the principle of least motion to organic reactions. III. Eliminations, enolizations, and homoenolizations, J. Am. Chem. Soc. 96, 3141–3146 (1974).CrossRefGoogle Scholar
  188. 178.
    S. Ehrenson, Application of analytic least motion forms to organic reactivities, J. Am. Chem Soc. 96, 3784–3793 (1974).CrossRefGoogle Scholar
  189. 179.
    J. E. Leffler, Parameters for the description of transition states, Science 117, 340–341 (1953).PubMedCrossRefGoogle Scholar
  190. 180.
    C. G. Swain and E. R. Thornton, Effect of structural changes in reactants on the structure of transition states, J. Am. Chem. Soc. 84, 817–821 (1962).CrossRefGoogle Scholar
  191. 181.
    J. E. Critchlow, Prediction of transition state configuration in concerted reactions from the energy requirements of the separate processes, J. Chem. Soc. Faraday Trans. 1 68, 1774–1792 (1972).Google Scholar
  192. 182.
    D. J. McLennan, Effect of substituents on the geometry of transition states for slow proton transfer reactions, J. Chem. Soc. Faraday Trans. 171, 1516–1527 (1975).Google Scholar
  193. 183.
    G. J. Frisone and E. R. Thornton, Solvolysis mechanisms. fi-Deuterium isotope effects for t-butyl chloride solvolysis at constant ionizing power and effect of structure of reactant on SN1 transition-state geometry, J. Am. Chem. Soc. 90, 1211–1215 (1968).CrossRefGoogle Scholar
  194. 184.
    W. J. le Noble and T. Asano, Special effect of pressure on highly hindered reactions as a possible manifestation of the Hammond postulate, J. Am. Chem. Soc. 97, 1778–1782 (1975).CrossRefGoogle Scholar
  195. 185.
    J. E. Reimann and W. P. Jencks, The mechanism of nitrone formation. A defense of anthropomorphic electrons, J. Am. Chem. Soc. 88, 3973–3982 (1966).PubMedCrossRefGoogle Scholar
  196. 186.
    a) W. P. Jencks, Requirements for general acid—base catalysis of complex reactions, J. Am. Chem. Soc. 94, 4731–4732 (1972); (b) W. P. Jencks, Enforced general acid—base catalysis of complex reactions and its limitations, Ace. Chem. Res. 9, 425–432 (1976).Google Scholar
  197. 187.
    E. K. Thornton and E. R. Thornton, Reference 3, pp. 261 263.Google Scholar
  198. 188.
    R. L. Schowen, Reference 9, pp. 309–329.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Elizabeth K. Thornton
    • 1
  • Edward R. Thornton
    • 2
  1. 1.Department of ChemistryWidener CollegeChesterUSA
  2. 2.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations