Hormones and other Messenger Molecules: An Approach to Unity

  • Jesse Roth
  • Derek LeRoith
  • Joseph Shiloach
  • Chaim Rabinowitz
Part of the Biochemical Endocrinology book series (BIOEND)


Endocrinology was formulated in the late 19th and early 20th centuries. The central concept of endocrinology was that a group of specialized cells limited to one location in the body release chemical messengers which travel through the blood stream to act upon and regulate target cells throughout the body. These chemical messengers were named hormones 1.


Intercellular Communication Unicellular Organism Luteinizing Hormone Release Hormone Messenger Molecule Chemical Messenger 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Starling, E.H. The Croonian Lectures. Lancet August 26: 579–583, (1905).Google Scholar
  2. 2.
    Pearse A.G.E. The cytochemistry and ultrastructure of poly- peptide hormone-producing cells of the APUD series, and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17: 303–313, (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    Pearse, A.G.E., Polak, J.M., Facer, P., and Marangos, P.J. Neuron specific enolase in gastric and related endocrine cells. The facts and their significance. Hepatogastroenterology 27: 78–86 (1980).Google Scholar
  4. 4.
    Fujita, T. The gastro-enteric endocrine cell and its para- neuronic nature. In:Chromafin, Enterochromafin and Related Cells, R.E. Coupland and T. Fujita, ed., Elsevier, Amsterdam, 191–208 (1976).Google Scholar
  5. 5.
    LeRoith, D., Shiloach, J., Roth, J. and Lesniak, M.A. Insulin or a closely related molecule is native to Escherichia coli. J. Biol. Chem. 256: 6533–6536 (1981).Google Scholar
  6. 6.
    LeRoith, D., Shiloach, J., Roth, J. and Lesniak, M.A. Evol- utionary origins of vertebrate hormones:substances similar to mammalian insulins are native to unicellular organisms. Proc. Natl. Acad. Sci. (USA) 77: 6184–6188 (1980).CrossRefGoogle Scholar
  7. 7.
    LeRoith, D., Shiloach, J., Heffron, R., Rubinovitz, C., Tanenbaum, R. and Roth, J. Insulin-related material in microbes: Similarities and differences from mammalian insulins (submitted for publication).Google Scholar
  8. 8.
    Berelowitz, M., LeRoith, D., Von Schenk, H., Newgard, C., Szabo, M., Frohman, L.A., Shiloach, J. and Roth, J. Somatostatin-like immunoactivity and biological activity is present in T. pyriformis, a ciliated protozoan. Endocrinology 110: 1939–1944 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    LeRoith, D., Liotta, A.S., Roth, J., Shiloach, J., Lewis, M.E., Pert, C.B., and Krieger, D.T. Corticotropin and (3- endorphin-like materials are native to unicellular organisms. Proc. Natl. Acad. Sci. (USA) 79: 2086–2090 (1982).CrossRefGoogle Scholar
  10. 10.
    Schwabe, C., LeRoith, D., Thompson, R.P., Shiloach, J. and Roth, J. Reladin extracted from protozoa (Tetrahymena pyriformis). J. Biol. Chem. 258: 2778–2781 (1983).PubMedGoogle Scholar
  11. 11.
    Perez-Cano, R., Murphy, P.K., Girgis, S.I., Arnett, T.R., Blenkharn, L. and Maclntyre, I. Unicellular organisms contain a molecule resembling human calcitonin. Endocrinology, 110: 673A (abstract) (1982).Google Scholar
  12. 12.
    Macchia, V., Bates, R.W. and Pastan, I. Purification and properties of thyroid stimulating factor isolated from Clostridium perfringens. J. Biol. Chem. 242: 3726–3730 (1967).PubMedGoogle Scholar
  13. 13.
    Maruo, T., Cohen, H., Segal, S.J. and Koide, S.S. Production of choriogonadotropin-like factor by a microorganism. Proc. Natl. Acad. Sci. (USA) 76: 6622–6626 (1979).CrossRefGoogle Scholar
  14. 14.
    Acevedo, H.F., Slifkin, M., Pouchet, G.R. and Pardo, M. Immunocytochemical localization of a choriogonadotropin-like protein in bacteria isolated from cancer patients. Cancer 41: 1217–1219 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    Domingue, G.J., Acevedo, H.F., Powell, F.E. and Stevens, V.C. In vivo production by bacterial vaccines of choriogonadotropin antibodies in the rabbit. Endocrinology 112:157A (1983).CrossRefGoogle Scholar
  16. 16.
    Richert, N.D. and Ryan, R.J. Specific gonadotropin binding to Pseudomonas maltophilia. Proc. Natl. Acad. Sci. (USA) 74: 878–882 (1977).CrossRefGoogle Scholar
  17. 17.
    Weiss, M., Ingbar, S.H., Winblad, S., and Kasper, D.L. Demonstration of a saturable binding site for thyrotropin in Yersinia enterocolitica. Science 219: 1331–1333 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    Josefsson, J.O. and Johansson, P. Naloxone-reversible effects of opioids on pinocytosis in Amoeba proteus. Nature 282: 78–80 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    Stephens, K., Hegeman, G.D. and White, D. Pheromone produced by the myxobacterium Stigmatella aurantiaca. J. Bacteriology 149: 739–747 (1982).Google Scholar
  20. 20.
    Sarkar, N., Langley, D. and Paulus, H. Biological function of gramicidin: Selective inhibition of RNA polymerase. Proc. Natl. Acad. Sci. (USA) 74: 1478–1482 (1979).CrossRefGoogle Scholar
  21. 21.
    Bonner, J.T. Aggregation and differentiation in the cellular slime molds. Ann. Rev. Microbiology 25: 75–92 (1971).CrossRefGoogle Scholar
  22. 22.
    Dunny, G.M., Craig, R.A., Carron, R.L. and Clewell, D.B. Plasmid transfer in Streptococcus fecalis; production of multiple sex pheromones by recipients. Plasmid 2: 454–465 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    O’Day, D.H. Modes of cellular communication and sexual interactions in eukaryotic microbes. In: Sexual Inter-actions in Eukaryotic Microbes, O’Day, D.H. and P.A. Horgen eds. Acad. Press, N.Y., 3–17 (1981).Google Scholar
  24. 24.
    Hunt, L.T. and Dayhoff, M.D. Structural and functional similarities among hormones and active peptides from distantly related eukaryotes. In: Peptides: Structure and Biological Function. Gross, E. and Meienhofer, J. eds. Pierce Chemical Co., Proceedings of The Sixth American Peptide Symposium, Rockford, Il. 757–760 (1979).Google Scholar
  25. 25.
    Loumaye, E., Thorner, J., and Catt, K.J. Yeast mating pheromone activates mammalian gonadotrophs: Evolutionary conservation of a reproductive hormone? Science 218: 1324–1325 (1982).CrossRefGoogle Scholar
  26. 26.
    Roth, J., LeRoith, D., Shiloach, J., Lesniak, M.A., Rosenzweig, L., and Havrankova, J. The evolutionary origins of hormones, neurotransmitters and other extracellular chemical messengers. N. Eng. J. Med. 306: 523–526 (1982).CrossRefGoogle Scholar
  27. 27.
    Roth, J., LeRoith, D., Shiloach, J. and Rubinovitz, C. Intercellular Communication: An Attempt at a Unifying Hypothesis. Clin. Res. 31: 354–363 (1983).Google Scholar
  28. 28.
    Kramer, J.J. Vertebrate hormones in insects. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology 7: Endocrinology, Chap. 20 (in press).Google Scholar
  29. 29.
    Plisetskaya, E., Kazakov, V.K., Solititskaya, L., and Leibson, L.G. Insulin producing cells in the gut of freshwater bivalve molluscs Anodonta cygnea and Unio pictorum and the role of insulin in the regulation of their carbohydrate metabolism. Gen. Comp. Endocrinol. 35: 133–145 (1978).PubMedCrossRefGoogle Scholar
  30. 30.
    Duve, H., Thorpe, A. Immunofluorescent localization of insulin-like material in the median neurosecretory cells of the blowfly Calliphora vomitoria. Cell Tiss. Res. 200: 187–191 (1979).Google Scholar
  31. 31.
    Duve, H., Thorpe, A. and Lazarus, N.R. Isolation of material displaying insulin-like immunological and biological activity from the brain of the blowfly, Calliphora vomitoria. Biochem. J. 184: 221–227 (1979).Google Scholar
  32. 32.
    Braunstein, G.D., Kandar, V., Rasor, J., Swaminathan, N. and Wade, M.E. Widespread distribution of chorionic gonadotropin-like substance in normal human tissues. J. Clin. Endocrinol. Met. 49: 917–925 (1979).CrossRefGoogle Scholar
  33. 33.
    O’dell, W.D. and Wolfsen, A.R. Hormones from tumors. Are they ubiquitous? Amer. J. Med. 68: 317–318 (1980).CrossRefGoogle Scholar
  34. 34.
    Liotta, A.S., Osathanondh, R., Ryan, K.J., and Krieger, D.T. Presence of corticotropin in human placenta: Demonstration of in vitro synthesis. Endocrinology 101: 1552–1558 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    Murakami, K., Taniguchi, H. and Baba, S. Presence of insulin-like immunoreactivity and biosynthesis in rat and human parotid gland. Diabetologia 22: 358–361 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    Budd, G.C., Pansky, B. and Cordell, B. Insulin or insulin-like peptides in the pituitary gland. J. Cell. Biol. 163: 404A (abstract) (1983).Google Scholar
  37. 37.
    Uvnas-Möberg, K., Uvnas, B., Posloncec, B. Castensson, S., Hagerman, M. and Rubio, C. Occurrence of an insulin-like peptide in extracts of peripheral nerves of the cat and in extracts of human vagal nerves. Acta Physiol. Scand. 115: 471 (1982).Google Scholar
  38. 38.
    Sela, I. Plant-virus interactions related to resistance and localization of viral infections. Advances Virus Res. 26: 201–237 (1981).CrossRefGoogle Scholar
  39. 39.
    Orchansky, P., Rubenstein, M., Sela, I. Human interferons protect plants from virus infection. Proc. Natl. Acad. Sci. 79: 2278–2280 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Jesse Roth
    • 1
  • Derek LeRoith
    • 1
  • Joseph Shiloach
    • 2
  • Chaim Rabinowitz
    • 2
  1. 1.Diabetes Branch, Laboratory of Nutrition and EndocrinologyNIADDK, NIHBethesdaUSA
  2. 2.Pilot Plant, Laboratory of Nutrition and EndocrinologyNIADDK, NIHBethesdaUSA

Personalised recommendations