Advertisement

Estrous Cycle Dependent Modulation of Muscarinic Cholinergic Receptors in the Hypothalamus and Adenohypophysis

  • Mordechai Sokolovsky
  • Ethy Moscona-Amir
  • Yaakov Egozi
Part of the Biochemical Endocrinology book series (BIOEND)

Abstract

Muscarinic acetylcholine receptors mediate the response of cells to the neurotransmitter acetylcholine (AcCho). The physiological significance of muscarinic receptors in the parasympathetic nervous system has been well documented.1 Among the most marked effects of muscarinic agonists are those observed in gastric and salivary glands, smooth muscle and the cardiovascular system.1 In the central nervous system most of the cholinergic receptors are of the muscarinic type;2 some of them, e.g. cerebral cortex receptors, are mainly excitatory while others, particularly in the hypothalamus, are mostly inhibitory.3

Keywords

Luteinizing Hormone Muscarinic Receptor Estrous Cycle Muscarinic Agonist Agonist Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Pepeu and H. Ladinsky, “Cholinergic Mechanisms,” Plenum Press, New York (1981).CrossRefGoogle Scholar
  2. 2.
    K. Krnjevic and J.W. Phillis, Inotophoretic studies of neurons in the mammalian cerebral cortex, J. Physiol. (Lond.) 165: 274 (1963).Google Scholar
  3. 3.
    K. Krnjevic, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418 (1974).Google Scholar
  4. 4.
    M. Sokolovsky, D. Gurwitz, and Y. Kloog, Biochemical characterization of the muscarinic receptors, Adv. in Enzymology 55:137 (1983).Google Scholar
  5. 5.
    M. Sokolovsky, Muscarinic receptors in the central nervous system, Int’l Review of Neurobiology 25, in press (1983).Google Scholar
  6. 6.
    N.J.M. Birdsall, and H.C. Hulme, Biochemical studies on muscarinic receptors, J. Neurochem. 27: 7 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Avissar, Y. Egozi, and M. Sokolovsky, Bicochemical characterization and sex dimorphism of muscarinic receptors in rat adenohypophysis, Neuroendocrinology 32: 303 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Sokolovsky, Y. Egozi, and S. Avissar, Molecular regulation of receptors: Interaction of ß-estradiol and progesterone with the muscarinic system, Proc. Natl. Acad. Sci. USA 78:15554 (1981)CrossRefGoogle Scholar
  9. 9.
    Y. Egozi, S. Avissar, and M. Sokolovsky, Muscarinic mechanisms and sex hormone secretion in rat adenohypophysis and preoptic area, Neuroendocrinology 35: 93 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Avissar, Y. Egozi, and M. Sokolovsky, Studies on muscarinic receptors in mouse and rat hypothalamus: A comparison of sex and cyclical differences, Neuroendocrinology 32: 295 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    P.W. Young, R.J. Bicknell, and J.G.L. Schofield, Acetylcholine stimulates growth hormone secretion, phosphatidyl inositol labeling 45Ca++ efflux and cyclic GMP accumulation in bovine anterior pituitary gland, J. Endocr. 80: 203 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Libertun, and S.M. McCann, Blockade of the release of gonadotropin and prolactin by subcutaneous or intraventricular injection of atropin in male and female rats, Endocrinology 92: 1714 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    W. Vale, C. Rivier,, M. Brown, L. Chan, N. Ling, and J. Rivier, Application of adenohypophyseal cell cultures to neuroendocrine studies, in: “Hypothalamus and Endocrine Function,” F. Labrie, J. Mietes, and G. Pelleties, eds., Plenum Press, New York ( 1976Google Scholar
  14. 14.
    S.R. Vivian, and F.S. Labella, Cellular mechanisms of anterior pituitary secretion: estimation of several hormones release in vitro, Mem. Soc. Endocr. 19: 203 (1971).Google Scholar
  15. 15.
    L.H. Lindstrom, and N.J. Meyerson, The effect of pilocarpin, oxotremorine and arecoline in combination with methylatropin on hormone activated oestrous behaviour in ovariectomized rats, Psychopharmacology 11: 405 (1967).CrossRefGoogle Scholar
  16. 16.
    D.K. Sarkar, and G. Fink, Luteinizing hormone releasing factor in pituitary stalk plasma from long-term ovariectomized rats: Effects of steroids, J. Endocr. 86: 511 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Fink, Feedback actions of target hormones on hypothalamus and pituitary with special reference to gonadal steroids, A Rev. Physiol. 41: 571 (1979).CrossRefGoogle Scholar
  18. 18.
    R.L. Goodman, and E. Knobil, The sites of action of ovarian steroids in regulation of LH secretion, Neuroendocrinology 32: 57 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Drouin, and F. Labrie, Interactions between l7ß-estradiol and progesterone in the control of luteinizing hormone and follicle stimulating hormone release in rat anterior pituitary cells in culture, Endocrinology 108: 52 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    K.J. Catt, S.P. Harwood, G. Aguilera, and M.C. DuFau, Hormonal regulation of peptide receptors and target cell responses, Nature 280: 109 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    Y.I. Henis, R. Galron, S. Avissar, and M. Sokolovsky, Interactions between antagonist occupied muscarinic binding sites in rat adenohypophysis, FEBS Lett, (1982).Google Scholar
  22. 22.
    J.B. Galper, L.C. Dziekan, D.S. O’Hara, and T.W. Smith, The biphasic response of muscarinic cholinergic receptors in cultured heart cells to agonists, J. Biol. Chem. 257: 10344 (1982).PubMedGoogle Scholar
  23. 23.
    S.J, Legan, G.A. Coon, and F. Karsch, Role of estrogen as initiator of daily LH surges in the ovariectomized rat, Endocrinology 96: 50 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    L.C. Huppert, Induction of ovulation with clomiphene citrate, Fertil. Steril. 31: 1 (1979).Google Scholar
  25. 25.
    G. Ben-Baruch, G. Schreiber, and M. Sokolovsky, Cooperativity pattern in the interaction of the antiestrogen drug clomiphene with the muscarinic receptors, Mol. Pharmac. 21: 287 (1982).Google Scholar
  26. 26.
    J.W. Everett, Brain, pituitary gland and the ovarian cycle. J. Biol. Reprod. 6: 3 (1972).Google Scholar
  27. 27.
    B. Flerko, Hypothalamic mediation of neuroendocrine regulation of.hypophyseal gonadotrophic functions, in: “MTP International Review of Science, Physiology Section, series 1, Reproductive Physiology,” R.O. Greep, ed., Butterworths, London (1972).Google Scholar
  28. 28.
    L.G. Nequin, J. Alvarez, and N.B. Schwartz, Measurement of serum steroid and gonadotropin levels and uterine and ovarian variables throughout 4 day and 5 day estrous cycles in the rat, J. Biol. Reprod. 20: 659 (1979).CrossRefGoogle Scholar
  29. 29.
    G.W. Bennett, and S.A. Whitehead, “Mammalian Neuroendocrinology,” Oxford University Press, New York (1983).Google Scholar
  30. 30.
    A.M. Poisner, and J.M. Trifaro, “The Secretory Granule,” Elsevier Biomedical Press, New York (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Mordechai Sokolovsky
    • 1
  • Ethy Moscona-Amir
    • 1
  • Yaakov Egozi
    • 1
  1. 1.Department of Biochemistry George S. Wise Faculty of Life SciencesTel Aviv UniversityTel-AvivIsrael

Personalised recommendations