Advertisement

Calcium: A Cellular Mediator of Luteolysis

  • Harold R. Behrman
  • Peter J. Albert
  • Steven D. Gore
  • Laneta J. Dorflinger
Part of the Biochemical Endocrinology book series (BIOEND)

Abstract

Regression of the corpus luteum with the consequent loss of ovarian progesterone secretion appears to be an induced response which is necessary for the re-occurrence of ovulation. Conversely, prevention of corpus luteum regression is essential for the continuation of pregnancy. The pivotal role of the corpus luteum in the reproductive cycle with its poorly understood functional regulation and control has generated interest in this organ for many years. Although progress has been made, the nature, origin and mechanism of action of agents which prolong corpus luteum function during early pregnancy have not been resolved. Moreover, the nature, origin and mechanism of action of luteolytic hormones are poorly understood in lower animals, and are completely unknown in the human. It is to these areas that we have directed our attention.

Keywords

Adenylate Cyclase Corpus Luteum Luteal Cell Cellular Mediator Luteal Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.R. Behrman, K. Yoshinaga and R.O. Greep, Extraluteal effects of prostaglandins, Ann. N.Y. Acad. Sci. 180: 426 (1972).CrossRefGoogle Scholar
  2. 2.
    H.R. Behrman, G.J. Macdonald and R.O. Greep, Regulation of ovarian cholesterol esters: evidence fof the enzymatic sites of prostaglandin-induced loss of corpus luteum function, Lipids 6: 791 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    C.Y. Pang and H.R. Behrman, Acute effects of PGF2a on ovarian and luteal blood flow, luteal gonadotropin uptake in vivo and gonadotropin binding in vitro, Endocrinology 108: 2239 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    H.R. Behrman, T.S. Ng and G.P. Orczyk, Interactions between prostaglandins and gonadotropins on corpus luteum function, in: “Gonadotropins and Gonadal Function”, N.R. Moudgal, ed., Academic Press, N.Y. (1974).Google Scholar
  5. 5.
    C.Y. Pang and H.R. Behrman, Acute effects of PGF2a on ovarian and luteal blood flow, luteal gonadotropin uptake in vivo and gonadotropin binding in vitro, Endocrinogy 108: 2239 (1981).CrossRefGoogle Scholar
  6. 6.
    E.W. Horton and N.L. Poyser, Uterine luteolytic hormone: a physiological role for PGF2a, Physiol. Rev. 56: 595 (1976).PubMedGoogle Scholar
  7. 7.
    H.R. Behrman, Prostaglandins in hypothalamo-pituitary and ovarian function, Ann. Rev. Physiol. 41: 685 (1979).CrossRefGoogle Scholar
  8. 8.
    C.Y. Lee, K. Tateishi, R.J. Ryan and N.S. Jiang, Binding of human chorionic gonadotropin by rat ovarian slices: dependence on the functional state of the ovary, Proc. Soc. Exp. Biol. Med. 148: 505 (1975).PubMedGoogle Scholar
  9. 9.
    M. Hichens, D.L. Grinwich and H.R. Behrman, PGF2a-induced loss of corpus luteum gonadotropin receptors, Prostaglandins 7: 449 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    D.L. Grinwich, M. Hichens and H.R. Behrman, Control of the LH receptor by prolactin and prostaglandin F2a in rat corpora lutea, Biol. Reprod. 14: 1212 (1974).Google Scholar
  11. 11.
    J.L. Cameron and R.L. Stouffer, Gonadotroopin receptors of the primate corpus luteum. II. Changes in available luteinizing hormone-and chorionic gonadotropin-binding sites in macaque luteal membranes during the nonfertile menstrual cycle, Endocrinology 110: 228 (1982).Google Scholar
  12. 12.
    M.A. Dickman, P.O’Callaghan, T.M. Nett and G.D. Niswender, Effect of prostaglandin F2 on the number of LH receptors in ovine corpora lutea. Biol Reprod. 19: 1010 (1978).CrossRefGoogle Scholar
  13. 13.
    H.R. Behrman and M. Hichens, Rapid block of gonadotropin uptake by corpora lutea in vivo induced by prostaglandin F2a, Prostaglandins 12: 83 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    J.P. Thomas, L.J. Dorf linger and H.R. Behrman, Mechanism of the rapid antigonadotropic action of prostaglandins in cultured luteal cells, Proc. Nat. Acad. Sci. (USA) 75: 1344 (1978).CrossRefGoogle Scholar
  15. 15.
    L.J. Dorflinger, J.L. Luborsky, S.D. Gore and H.R. Behrman, Inhibitory characteristics of prostaglandin F2a in the rat luteal cell, Mol. Cell. Endocrinology 33: 225 (1983).CrossRefGoogle Scholar
  16. 16.
    M. Lahav, A. Freud, and H. Lindner, Abrogation by prostaglandin F2a of LH stimulated cyclic AMP accumulation in isolated rat corpora lutea of pregnancy, Biochem. Biophys. Res. Commun. 68: 1294 (1997).CrossRefGoogle Scholar
  17. 17.
    K. Wright, C.Y. Pang and H.R. Behrman, Luteal membrane binding of prostaglandin F2a and sensitivity of corpora lutea to prostaglandin F2a-induced luteolysis in pseudopregnant rats, Endocrinology 106: 1333 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Wright, J.L. Luborsky and H.R. Behrman, Specific binding of prostaglandin F2a to membranes of rat corpora lutea, Mol. Cell. Endocrinology 13: 25 (1979).CrossRefGoogle Scholar
  19. 19.
    W.S. Powell, S. Hammarstrom, V. Kylden, B. Samuelsson and B. Sjoberg, Prostaglandin F2a receptor in human corpora lutea, Lancet 1: 120 (1974).Google Scholar
  20. 20.
    W.S. Powell, S. Hammarstrom and B. Samuelsson, Prostaglandin F2a receptor in ovine corpora lutea, Eur. J. Biochem. 41: 103 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    W.S. Powell, S. Hammarstrom and B. Samuelsson, Occurrence and properties of prostaglandin F2a receptor in bovine corpora lutea, Eur. J. Biochem 56: 73 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    A.K. Hall, S.L. Preston and H.R. Behrman, Purine amplification of luteinizing hormone actions in ovarian luteal cells, J. Biol. Chem. 256: 10390 (1981).PubMedGoogle Scholar
  23. 23.
    H.R. Behrman, R. Ohkawa and S.L. Preston, Transport and selective utilization of adenosine as a prosubstrte for LH-sensitive adenylate cyclase in the luteal cell, Endocrinology 113: 1132 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Brennan, R. Ohkawa, S.D. Gore and H.R. Behrman, Adenine-derived purines increase ATP levels in the luteal cell: Evidence that cell levels of ATP may limit the stimulation of cyclic AMP accumulation by LH, Endocrinology 112: 4999 (1983).CrossRefGoogle Scholar
  25. 25.
    H.R. Behrman, A.K. Hall, S.L. Preston and S.D. Gore, Antagonistic interactions of adenosine and prostaglandin F2a modulate acute responses of luteal cells to luteinizing hormone, Endocrinology 110: 38 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    H.R. Behrman, M.L. Polan, R. Ohkawa, N. Laufer, J.L. Luborsky, A.T. Williams and S.D. Gore, Purine modulation of LH action in gonadal cells, J. Steroid. Biochem. 19: 789 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    H.R. Behrman, S.L. Preston and A.K. Hall, Cellular mechanism of the antigonadotropic action of LHRH in the corpus luteum, Endocrinology 107: 6546 (1980).CrossRefGoogle Scholar
  28. 28.
    S.D. Gore and H.R. Behrman, Alteration of transmembrane sodium and potassium gradients inhibits the action of LH in the luteal cell, Endocrinology (In Press 1984).Google Scholar
  29. 29.
    L.J. Dorflinger, P.J. Albert, A.T. Williams and H.R. Behrman, Calcium is an inhibitor of LH-sensitive adenylate cyclase in the luteal cell, Endocrinology (In Press 1984).Google Scholar
  30. 30.
    T.A. Bramley and R.J. Ryan, Interactions of gonadotropins with corpus luteum membranes. IX Changes in the specific activities of some plasma-membrane marker enzymes in rat ovarian homogenates and purified membrane fractions at various times of the priming with PMSG and hCG, Mol. Cell. Endocrinology 19: 33 (1980).CrossRefGoogle Scholar
  31. 31.
    I. Kim and D.S. Yeoun, Effect of prostaglandin F2a on Na+-K+ATPase activity in luteal membranes, Biol. Reprod. 29: 48 (1983).CrossRefGoogle Scholar
  32. 32.
    H.R. Behrman, Unpublished observations.Google Scholar
  33. 33.
    P.J. Albert, S.L. Preston and H.R. Behrman, Prostaglandin-induced luteolysis linked to inhibition of calcium pump activity, 7th Int. Cong. Endocrinology (1984).Google Scholar
  34. 34.
    A.K. Verma and J.T. Penniston, A high affinity Ca2+-stimulated and Mg2+-dependent ATPase in rat corpus luteum plasma membrane fractions, J. Biol. Chem. 256: 1269 (1981).PubMedGoogle Scholar
  35. 29.
    L.J. Dorflinger, P.J. Albert, A.T. Williams and H.R. Behrman, Calcium is an inhibitor of LH-sensitive adenylate cyclase in the luteal cell, Endocrinology (In Press 1984).Google Scholar
  36. 30.
    T.A. Bramley and R.J. Ryan, Interactions of gonadotropins with corpus luteum membranes. IX Changes in the specific activities of some plasma-membrane marker enzymes in rat ovarian homogenates and purified membrane fractions at various times of the priming with PMSG and hCG, Mol. Cell. Endocrinology 19: 33 (1980).CrossRefGoogle Scholar
  37. 31.
    I. Kim and D.S. Yeoun, Effect of prostaglandin F2a on Na+-K+ATPase activity in luteal membranes, Biol. Reprod. 29: 48 (1983)PubMedCrossRefGoogle Scholar
  38. 32.
    H.R. Behrman, Unpublished observations.Google Scholar
  39. 33.
    P.J. Albert, S.L. Preston and H.R. Behrman, Prostaglandin-induced luteolysis linked to inhibition of calcium pump activity, 7th Int. Cong. Endocrinology (1984).Google Scholar
  40. 34.
    A.K. Verma and J.T. Penniston, A high affinity Ca2+-stimulated and Mg2+-dependent ATPase in rat corpus luteum plasma membrane fractions, J. Biol. Chem. 256: 1269 (1981).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Harold R. Behrman
    • 1
    • 2
  • Peter J. Albert
    • 1
    • 2
  • Steven D. Gore
    • 1
    • 2
  • Laneta J. Dorflinger
    • 1
    • 2
  1. 1.Reproductive Biology Section, Department of ObstetricsYale University School of MedicineNew HavenUSA
  2. 2.Reproductive Biology Section, Department of Gynecology and PharmacologyYale University School of MedicineNew HavenUSA

Personalised recommendations