Advertisement

The Phase Problem

  • Herbert A. Hauptman

Keywords

Structure Factor Equivalence Class Arithmetic Progression Electron Density Function Phase Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woolfson, M. M. (1970). An Introduction to X-Ray Crystallography. Cambridge: University Press. 112.Google Scholar
  2. Harker, D. and Kasper, J. S. (1948). Phases of Fourier Coefficients Directly from Crystal Diffraction Data. Acta Cryst. 1, 70–75.MathSciNetCrossRefGoogle Scholar
  3. Karle, J. and Hauptman, H. (1950). The Phases and Magnitudes of the Structure Factors. Acta Cryst. 3, 181–187.MathSciNetCrossRefGoogle Scholar
  4. GoOdkoop, J. A. (1950). Remarks on the Theory of Phase Limiting Inequalities and Equalities. Acta Cryst. 3, 374–378.MathSciNetCrossRefGoogle Scholar
  5. Von Eller, G. (1955). Inégalités de Karle-Hauptman et Géometrie Euclidienne. Acta Cryst. 8, 641–645.CrossRefGoogle Scholar
  6. Bouman, J. (1956). A General Theory of Inequalities. Acta Cryst. 9, 777–780.CrossRefGoogle Scholar
  7. Toguchi, I. and Naya, S. (1958). Matrix Theoretical Derivation of Inequalities. Acta Cryst. 11, 543–545.CrossRefGoogle Scholar
  8. Karle, J. and Hauptman, H. (1953). Application of Statistical Methods to the Naphthalene Structure. Acta Cryst. 6, 473–476.MathSciNetCrossRefGoogle Scholar
  9. Christ, C. L. and Clark, J. R. (1956). The Structure of Meyer-hofferite, 2Ca0.3B203.7H20, a P1 Crystal, Determined by the Direct Method of Hauptman and Karle. Acta Cryst. 9, 830.CrossRefGoogle Scholar
  10. Karle, J.; Hauptman, H. and Christ, C. (1958). Phase Determination for Colemanite, CaB304(OH)3.H20. Acta Cryst. 11, 757–761.CrossRefGoogle Scholar
  11. Karle, I.; Hauptman, H.; Karle, J. and Wing, A. (1958). Crystal and Molecular Structure of p,p’-Dimethoxybenzophenone by the Direct Probability Method. Acta Cryst. 11, 257–263.CrossRefGoogle Scholar
  12. Hauptman, H. and Karle, J. (1954). Solution of the Phase Problem for Space Group P1. Acta Cryst. 7, 369–374.CrossRefGoogle Scholar
  13. Hauptman, H. and Karle, J. (1953). Solution of the Phase Problem I. The Centrosymmetric Crystal. ACA Monograph No. 3. Ann Arbor: Edwards Brothers, Inc. 34, 25.Google Scholar
  14. Hauptman, H. and Karle, J. (1956). Structure Invariants and Seminvariants for Non-Centrosymmetric Space Groups. Acta Cryst. 9, 45–55.MathSciNetCrossRefGoogle Scholar
  15. Hauptman, H. and Karle, J. (1959). Seminvariants for Centro-symmetric Space Groups with Conventional Centered Cells. Acta Cryst. 12, 93–97.MathSciNetCrossRefGoogle Scholar
  16. Karle, J. and Hauptman H. (1961). Seminvariants for Non-Centrosymmetric Space Groups with Conventional Centered Cells. Acta Cryst. 14, 217–223.MathSciNetCrossRefGoogle Scholar
  17. Hauptman, H. and Karle, J. (1957). A Unified Algebraic Approach to the Phase Problem. I. Space Group P1. Acta Cryst. 10, 267–270.CrossRefGoogle Scholar
  18. Hauptman, H.; Fisher, J.; Hancock, H. and Norton, D. (1969). Phase Determination for the Estriol Structure. Acta Cryst. B25, 811–814.CrossRefGoogle Scholar
  19. International Tables for X-Ray Crystallography (1952). Vol. 1. Birmingham: Kynoch Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • Herbert A. Hauptman
    • 1
  1. 1.Mathematical Biophysics DepartmentMedical Foundation of BuffaloBuffaloUSA

Personalised recommendations