Abstract
The word “heuristic” means: based on, or involving, trial and error. Heuristic results are formulated following the observation of numerical data from tables or from extended calculations. Sometimes these results express the conclusions of some statistical analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
BOUNIAKOWSKY, V. Nouveaux théorèemes relatifs a la distribution des nombres premiers et à la décomposition des entiers en facteurs. Mem. Acad. Sci. St. Petersbourg, (6), Sei. Math. Phys., 6, 1857, 305–329.
DICKSON, L.E. A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math., 33, 1904, 155–161.
NAGELL, T. Zur Arithmetik der Polynome. Abhandl. Math. Sem. Univ. Hamburg, 1, 1922, 179–194.
HARDY, G.H. & LITTLEWOOD, J.E. Some problems in “Partitio Numerorum,” III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 561–630. Clarendon Press, Oxford, 1966.
HEILBRONN, H. Uber die Verteilung der Primzahlen in Polynomen. Math. Ann., 104, 1931, 794–799.
BILHARZ, H. Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann., 114, 1937, 476–492.
RICCI, G. Su la congettura di Goldbach e la constante de Schnirelmann. Annali Scuola Norm. Sup. Pisa, 6 (2), 1937, 71–116.
LIÉNARD, R. Tables fondamentales a 50 décimales des sommes S n, u n, Σn. Centre de Docum. Univ., Paris, 1948.
WEIL, A. Sur les Courbes Algébriques et les Variétés qui s’en Déduisent. Hermann, Paris, 1948.
HASSE, H. Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin, 1950.
KUHN, P. Uber die Primteiler eines Polynoms. Proc. Intern. Congress Math., Amsterdam, 2, 1954, 35–37.
SCHINZEL, A. & SIERPIńSKI, W. Sur certaines hypothèses concernant les nombres premiers. Remarque. Acta Arithm., 4, 1958, 185–208 and 5, 1959, p. 259.
SHANKS, D. On the conjecture of Hardy & Littlewood concerning the number of primes of the form n 2 + a. Math. Comp., 14, 1960, 321–332.
SCHINZEL, A. Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers.” Acta Arithm., 7, 1961, 1–8.
WRENCH, J.W. Evaluation of Artin’s constant and the twin prime constant. Math. Comp., 15, 1961, 396–398.
BATEMAN, P.T. & HORN, R.A. A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp., 16, 1962, 363–367.
ANKENY, N.C. & ONISHI, H. The general sieve. Acta Arithm., 10, 1964, 31–62.
GILLIES, D.B. Three new Mersenne primes and a statistical theory. Math. Comp., 18, 1964, 93–98.
SHANKS, D. An analytic criterion for the existence of infinitely many primes of the form 1/2 (n 2 + 1). Illinois J. Math., 8, 1964, 377–379.
SIEGEL, C.L. Zu zwei Bemerkungen Kummers. Nachr. Akad. d. Wiss. Göttingen, Math. Phys. Kl., II, 1964, 51–62. Reprinted in Gesammelte Abhandlungen (edited by K. Chandrasekharan H. Maaβ), Vol. III, 436–442. Springer-Verlag, Berlin, 1966.
BATEMAN, P.T. & HORN, R.A Primes represented by irreducible, polynomials in one variable. Theory of Numbers (Proc. Symp. Pure Math., Vol. VIII), 119–132. Amer. Math. Soc., Providence, RI, 1965.
GROSSWALD, E. Topics from the Theory of Numbers. Macmillan, New York, 1966; second edition Birkhäuser, Boston, 1984.
HOOLEY, C. On Artin’s conjecture. Journal f. d. reine u. angew. Math., 225, 1967, 209–220.
SHANKS, D. & KRAVITZ, S. On the distribution of Mersenne divisors. Math. Comp., 21, 1967, 97–101.
RIEGER, G.J. On polynomials and almost-primes. Bull. Amer. Math. Soc., 75, 1969, 100–103.
SHANKS, D. A low density of primes. J. Recr. Math., 4, 1971/2, 272–275.
RIBENBOIM, P. Algebraic Numbers. Wiley-Interscience, New York, 1972.
RADEMACHER, H. Topics in Analytic Number Theory. Springer-Verlag, New York, 1975.
WUNDERLICH, M.C. On the Gaussian primes on the line Im(x) = 1. Math. Comp., 27, 1973, 399–400.
SHANKS, D. Calculation and applications of Epstein zeta functions. Math. Comp., 29, 1975, 271–287.
CHOWLA, S. & FRIEDLANDER, J.B. Class numbers and quadratic residues. Glasgow Math. J., 17, 1976, 47–52.
IWANIEC, H. Almost-primes represented by quadratic polynomials. Invent. Math., 47, 1978, 171–188.
SLOWINSKI, D. Searching for the 27th Mersenne prime. J. Recr. Math., 11, 1978/9, 258–261.
FELTHI, C. Non-nullité des fonctions zeta des corps quadratiques réels pour 0 < s < 1. C.R. Acad. Sci. Paris, Ser. A, 291, 1980, 623–625.
LENSTRA, Jr., H.W. Primality testing. Studieweek Getaltheorie en Computers. Stichting Math. Centrum, Amsterdam, 1980.
POWELL, B. Problem 6384 (Numbers of the form mP—n). Amer. Math. Monthly, 89, 1982, p. 278.
ISRAEL, R.B. Solution of problem 6384. Amer. Math. Monthly, 90, 1983, p. 650.
SCHINZEL, A. Selected Topics on Polynomials. Univ. of Michigan Press, Ann Arbor, 1982.
ADLEMAN, L.M. & ODLYZKO, A.M. Irreducibility testing and factorization of polynomials. Math. Comp., 41, 1983, 699–709.
SCHROEDER, M.R. Where is the next Mersenne prime hiding? Math. Intelligencer, 5, No. 3, 1983, 31–33.
WAGSTAFF, Jr., S.S. Divisors of Mersenne numbers. Math. Comp., 40, 1983, 385–397.
GUPTA, R. & RAM MURTY, P.M. A remark on Artin’s conjecture. Invent. Math., 78, 1984, 127–130.
MCCURLEY, K.S. Prime values of polynomials and irreducibility testing. Bull. Amer. Math. Soc., 11, 1984, 155–158.
MCCURLEY, K.S. The smallest prime value of x n + a. Can. J. Math., 38, 1986, 925–936.
MCCURLEY, K.S. Polynomials with no small prime values. Proc. Amer. Math. Soc., 97, 1986, 393–395.
MOLLIN, R.A. Necessary and sufficient conditions for the class number of a real quadratic field to be 1, and a conjecture of Chowla. Proc. Amer. Math. Soc., 101, 1987 (to appear).
MOLLIN, R.A. & WILLIAMS, H.C. A conjecture of S. Chowla via the generalized Riemann hypothesis. Proc. Amer. Math. Soc., 101, 1987 (to appear).
MOLLIN, R.A. & WILLIAMS, H.C. On prime valued polynomials and class numbers of real quadratic fields. Preprint, University of Calgary, 1987.
RAM MURTY, P.M. & SRINIVASAN, S. Some remarks on Artin’s conjecture. Can. Math. Bull. 30, 1987, 80–85.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1988 Springer-Verlag New York Inc.
About this chapter
Cite this chapter
Ribenboim, P. (1988). Heuristic and Probabilistic Results About Prime Numbers. In: The Book of Prime Number Records. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9938-4_7
Download citation
DOI: https://doi.org/10.1007/978-1-4684-9938-4_7
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4684-9940-7
Online ISBN: 978-1-4684-9938-4
eBook Packages: Springer Book Archive