Skip to main content

Heuristic and Probabilistic Results About Prime Numbers

  • Chapter
The Book of Prime Number Records
  • 202 Accesses

Abstract

The word “heuristic” means: based on, or involving, trial and error. Heuristic results are formulated following the observation of numerical data from tables or from extended calculations. Sometimes these results express the conclusions of some statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BOUNIAKOWSKY, V. Nouveaux théorèemes relatifs a la distribution des nombres premiers et à la décomposition des entiers en facteurs. Mem. Acad. Sci. St. Petersbourg, (6), Sei. Math. Phys., 6, 1857, 305–329.

    Google Scholar 

  2. DICKSON, L.E. A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math., 33, 1904, 155–161.

    Google Scholar 

  3. NAGELL, T. Zur Arithmetik der Polynome. Abhandl. Math. Sem. Univ. Hamburg, 1, 1922, 179–194.

    Google Scholar 

  4. HARDY, G.H. & LITTLEWOOD, J.E. Some problems in “Partitio Numerorum,” III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 561–630. Clarendon Press, Oxford, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  5. HEILBRONN, H. Uber die Verteilung der Primzahlen in Polynomen. Math. Ann., 104, 1931, 794–799.

    Article  MathSciNet  Google Scholar 

  6. BILHARZ, H. Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann., 114, 1937, 476–492.

    Article  MathSciNet  Google Scholar 

  7. RICCI, G. Su la congettura di Goldbach e la constante de Schnirelmann. Annali Scuola Norm. Sup. Pisa, 6 (2), 1937, 71–116.

    MATH  Google Scholar 

  8. LIÉNARD, R. Tables fondamentales a 50 décimales des sommes S n, u n, Σn. Centre de Docum. Univ., Paris, 1948.

    Google Scholar 

  9. WEIL, A. Sur les Courbes Algébriques et les Variétés qui s’en Déduisent. Hermann, Paris, 1948.

    MATH  Google Scholar 

  10. HASSE, H. Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin, 1950.

    Book  MATH  Google Scholar 

  11. KUHN, P. Uber die Primteiler eines Polynoms. Proc. Intern. Congress Math., Amsterdam, 2, 1954, 35–37.

    Google Scholar 

  12. SCHINZEL, A. & SIERPIńSKI, W. Sur certaines hypothèses concernant les nombres premiers. Remarque. Acta Arithm., 4, 1958, 185–208 and 5, 1959, p. 259.

    MATH  Google Scholar 

  13. SHANKS, D. On the conjecture of Hardy & Littlewood concerning the number of primes of the form n 2 + a. Math. Comp., 14, 1960, 321–332.

    MATH  Google Scholar 

  14. SCHINZEL, A. Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers.” Acta Arithm., 7, 1961, 1–8.

    MathSciNet  MATH  Google Scholar 

  15. WRENCH, J.W. Evaluation of Artin’s constant and the twin prime constant. Math. Comp., 15, 1961, 396–398.

    MathSciNet  MATH  Google Scholar 

  16. BATEMAN, P.T. & HORN, R.A. A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp., 16, 1962, 363–367.

    Article  MathSciNet  MATH  Google Scholar 

  17. ANKENY, N.C. & ONISHI, H. The general sieve. Acta Arithm., 10, 1964, 31–62.

    MathSciNet  MATH  Google Scholar 

  18. GILLIES, D.B. Three new Mersenne primes and a statistical theory. Math. Comp., 18, 1964, 93–98.

    Article  MathSciNet  MATH  Google Scholar 

  19. SHANKS, D. An analytic criterion for the existence of infinitely many primes of the form 1/2 (n 2 + 1). Illinois J. Math., 8, 1964, 377–379.

    MathSciNet  MATH  Google Scholar 

  20. SIEGEL, C.L. Zu zwei Bemerkungen Kummers. Nachr. Akad. d. Wiss. Göttingen, Math. Phys. Kl., II, 1964, 51–62. Reprinted in Gesammelte Abhandlungen (edited by K. Chandrasekharan H. Maaβ), Vol. III, 436–442. Springer-Verlag, Berlin, 1966.

    Google Scholar 

  21. BATEMAN, P.T. & HORN, R.A Primes represented by irreducible, polynomials in one variable. Theory of Numbers (Proc. Symp. Pure Math., Vol. VIII), 119–132. Amer. Math. Soc., Providence, RI, 1965.

    MathSciNet  Google Scholar 

  22. GROSSWALD, E. Topics from the Theory of Numbers. Macmillan, New York, 1966; second edition Birkhäuser, Boston, 1984.

    MATH  Google Scholar 

  23. HOOLEY, C. On Artin’s conjecture. Journal f. d. reine u. angew. Math., 225, 1967, 209–220.

    MathSciNet  MATH  Google Scholar 

  24. SHANKS, D. & KRAVITZ, S. On the distribution of Mersenne divisors. Math. Comp., 21, 1967, 97–101.

    Article  MathSciNet  MATH  Google Scholar 

  25. RIEGER, G.J. On polynomials and almost-primes. Bull. Amer. Math. Soc., 75, 1969, 100–103.

    Article  MathSciNet  MATH  Google Scholar 

  26. SHANKS, D. A low density of primes. J. Recr. Math., 4, 1971/2, 272–275.

    Google Scholar 

  27. RIBENBOIM, P. Algebraic Numbers. Wiley-Interscience, New York, 1972.

    MATH  Google Scholar 

  28. RADEMACHER, H. Topics in Analytic Number Theory. Springer-Verlag, New York, 1975.

    Google Scholar 

  29. WUNDERLICH, M.C. On the Gaussian primes on the line Im(x) = 1. Math. Comp., 27, 1973, 399–400.

    MathSciNet  MATH  Google Scholar 

  30. SHANKS, D. Calculation and applications of Epstein zeta functions. Math. Comp., 29, 1975, 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  31. CHOWLA, S. & FRIEDLANDER, J.B. Class numbers and quadratic residues. Glasgow Math. J., 17, 1976, 47–52.

    Article  MathSciNet  MATH  Google Scholar 

  32. IWANIEC, H. Almost-primes represented by quadratic polynomials. Invent. Math., 47, 1978, 171–188.

    Article  MathSciNet  MATH  Google Scholar 

  33. SLOWINSKI, D. Searching for the 27th Mersenne prime. J. Recr. Math., 11, 1978/9, 258–261.

    MathSciNet  Google Scholar 

  34. FELTHI, C. Non-nullité des fonctions zeta des corps quadratiques réels pour 0 < s < 1. C.R. Acad. Sci. Paris, Ser. A, 291, 1980, 623–625.

    MathSciNet  Google Scholar 

  35. LENSTRA, Jr., H.W. Primality testing. Studieweek Getaltheorie en Computers. Stichting Math. Centrum, Amsterdam, 1980.

    Google Scholar 

  36. POWELL, B. Problem 6384 (Numbers of the form mP—n). Amer. Math. Monthly, 89, 1982, p. 278.

    Article  Google Scholar 

  37. ISRAEL, R.B. Solution of problem 6384. Amer. Math. Monthly, 90, 1983, p. 650.

    MathSciNet  Google Scholar 

  38. SCHINZEL, A. Selected Topics on Polynomials. Univ. of Michigan Press, Ann Arbor, 1982.

    MATH  Google Scholar 

  39. ADLEMAN, L.M. & ODLYZKO, A.M. Irreducibility testing and factorization of polynomials. Math. Comp., 41, 1983, 699–709.

    Article  MathSciNet  MATH  Google Scholar 

  40. SCHROEDER, M.R. Where is the next Mersenne prime hiding? Math. Intelligencer, 5, No. 3, 1983, 31–33.

    Article  MathSciNet  MATH  Google Scholar 

  41. WAGSTAFF, Jr., S.S. Divisors of Mersenne numbers. Math. Comp., 40, 1983, 385–397.

    Article  MathSciNet  MATH  Google Scholar 

  42. GUPTA, R. & RAM MURTY, P.M. A remark on Artin’s conjecture. Invent. Math., 78, 1984, 127–130.

    Article  MathSciNet  MATH  Google Scholar 

  43. MCCURLEY, K.S. Prime values of polynomials and irreducibility testing. Bull. Amer. Math. Soc., 11, 1984, 155–158.

    Article  MathSciNet  MATH  Google Scholar 

  44. MCCURLEY, K.S. The smallest prime value of x n + a. Can. J. Math., 38, 1986, 925–936.

    Article  MathSciNet  MATH  Google Scholar 

  45. MCCURLEY, K.S. Polynomials with no small prime values. Proc. Amer. Math. Soc., 97, 1986, 393–395.

    Article  MathSciNet  MATH  Google Scholar 

  46. MOLLIN, R.A. Necessary and sufficient conditions for the class number of a real quadratic field to be 1, and a conjecture of Chowla. Proc. Amer. Math. Soc., 101, 1987 (to appear).

    Google Scholar 

  47. MOLLIN, R.A. & WILLIAMS, H.C. A conjecture of S. Chowla via the generalized Riemann hypothesis. Proc. Amer. Math. Soc., 101, 1987 (to appear).

    Google Scholar 

  48. MOLLIN, R.A. & WILLIAMS, H.C. On prime valued polynomials and class numbers of real quadratic fields. Preprint, University of Calgary, 1987.

    Google Scholar 

  49. RAM MURTY, P.M. & SRINIVASAN, S. Some remarks on Artin’s conjecture. Can. Math. Bull. 30, 1987, 80–85.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ribenboim, P. (1988). Heuristic and Probabilistic Results About Prime Numbers. In: The Book of Prime Number Records. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9938-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9938-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9940-7

  • Online ISBN: 978-1-4684-9938-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics