Advertisement

Heuristic and Probabilistic Results About Prime Numbers

  • Paulo Ribenboim

Abstract

The word “heuristic” means: based on, or involving, trial and error. Heuristic results are formulated following the observation of numerical data from tables or from extended calculations. Sometimes these results express the conclusions of some statistical analysis.

Keywords

Prime Number Probabilistic Result Irreducible Polynomial Primitive Root Linear Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1857.
    BOUNIAKOWSKY, V. Nouveaux théorèemes relatifs a la distribution des nombres premiers et à la décomposition des entiers en facteurs. Mem. Acad. Sci. St. Petersbourg, (6), Sei. Math. Phys., 6, 1857, 305–329.Google Scholar
  2. 1904.
    DICKSON, L.E. A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math., 33, 1904, 155–161.Google Scholar
  3. 1922.
    NAGELL, T. Zur Arithmetik der Polynome. Abhandl. Math. Sem. Univ. Hamburg, 1, 1922, 179–194.Google Scholar
  4. 1923.
    HARDY, G.H. & LITTLEWOOD, J.E. Some problems in “Partitio Numerorum,” III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 561–630. Clarendon Press, Oxford, 1966.MathSciNetMATHCrossRefGoogle Scholar
  5. 1931.
    HEILBRONN, H. Uber die Verteilung der Primzahlen in Polynomen. Math. Ann., 104, 1931, 794–799.MathSciNetCrossRefGoogle Scholar
  6. 1937.
    BILHARZ, H. Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann., 114, 1937, 476–492.MathSciNetCrossRefGoogle Scholar
  7. 1937.
    RICCI, G. Su la congettura di Goldbach e la constante de Schnirelmann. Annali Scuola Norm. Sup. Pisa, 6 (2), 1937, 71–116.MATHGoogle Scholar
  8. 1948.
    LIÉNARD, R. Tables fondamentales a 50 décimales des sommes S n, u n, Σn. Centre de Docum. Univ., Paris, 1948.Google Scholar
  9. 1948.
    WEIL, A. Sur les Courbes Algébriques et les Variétés qui s’en Déduisent. Hermann, Paris, 1948.MATHGoogle Scholar
  10. 1950.
    HASSE, H. Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin, 1950.MATHCrossRefGoogle Scholar
  11. 1954.
    KUHN, P. Uber die Primteiler eines Polynoms. Proc. Intern. Congress Math., Amsterdam, 2, 1954, 35–37.Google Scholar
  12. 1958.
    SCHINZEL, A. & SIERPIńSKI, W. Sur certaines hypothèses concernant les nombres premiers. Remarque. Acta Arithm., 4, 1958, 185–208 and 5, 1959, p. 259.MATHGoogle Scholar
  13. 1960.
    SHANKS, D. On the conjecture of Hardy & Littlewood concerning the number of primes of the form n 2 + a. Math. Comp., 14, 1960, 321–332.MATHGoogle Scholar
  14. 1961.
    SCHINZEL, A. Remarks on the paper “Sur certaines hypothèses concernant les nombres premiers.” Acta Arithm., 7, 1961, 1–8.MathSciNetMATHGoogle Scholar
  15. 1961.
    WRENCH, J.W. Evaluation of Artin’s constant and the twin prime constant. Math. Comp., 15, 1961, 396–398.MathSciNetMATHGoogle Scholar
  16. 1962.
    BATEMAN, P.T. & HORN, R.A. A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp., 16, 1962, 363–367.MathSciNetMATHCrossRefGoogle Scholar
  17. 1964.
    ANKENY, N.C. & ONISHI, H. The general sieve. Acta Arithm., 10, 1964, 31–62.MathSciNetMATHGoogle Scholar
  18. 1964.
    GILLIES, D.B. Three new Mersenne primes and a statistical theory. Math. Comp., 18, 1964, 93–98.MathSciNetMATHCrossRefGoogle Scholar
  19. 1964.
    SHANKS, D. An analytic criterion for the existence of infinitely many primes of the form 1/2 (n 2 + 1). Illinois J. Math., 8, 1964, 377–379.MathSciNetMATHGoogle Scholar
  20. 1964.
    SIEGEL, C.L. Zu zwei Bemerkungen Kummers. Nachr. Akad. d. Wiss. Göttingen, Math. Phys. Kl., II, 1964, 51–62. Reprinted in Gesammelte Abhandlungen (edited by K. Chandrasekharan H. Maaβ), Vol. III, 436–442. Springer-Verlag, Berlin, 1966.Google Scholar
  21. 1965.
    BATEMAN, P.T. & HORN, R.A Primes represented by irreducible, polynomials in one variable. Theory of Numbers (Proc. Symp. Pure Math., Vol. VIII), 119–132. Amer. Math. Soc., Providence, RI, 1965.MathSciNetGoogle Scholar
  22. 1966.
    GROSSWALD, E. Topics from the Theory of Numbers. Macmillan, New York, 1966; second edition Birkhäuser, Boston, 1984.MATHGoogle Scholar
  23. 1967.
    HOOLEY, C. On Artin’s conjecture. Journal f. d. reine u. angew. Math., 225, 1967, 209–220.MathSciNetMATHGoogle Scholar
  24. 1967.
    SHANKS, D. & KRAVITZ, S. On the distribution of Mersenne divisors. Math. Comp., 21, 1967, 97–101.MathSciNetMATHCrossRefGoogle Scholar
  25. 1969.
    RIEGER, G.J. On polynomials and almost-primes. Bull. Amer. Math. Soc., 75, 1969, 100–103.MathSciNetMATHCrossRefGoogle Scholar
  26. 1971.
    SHANKS, D. A low density of primes. J. Recr. Math., 4, 1971/2, 272–275.Google Scholar
  27. 1972.
    RIBENBOIM, P. Algebraic Numbers. Wiley-Interscience, New York, 1972.MATHGoogle Scholar
  28. 1973.
    RADEMACHER, H. Topics in Analytic Number Theory. Springer-Verlag, New York, 1975.Google Scholar
  29. 1973.
    WUNDERLICH, M.C. On the Gaussian primes on the line Im(x) = 1. Math. Comp., 27, 1973, 399–400.MathSciNetMATHGoogle Scholar
  30. 1975.
    SHANKS, D. Calculation and applications of Epstein zeta functions. Math. Comp., 29, 1975, 271–287.MathSciNetMATHCrossRefGoogle Scholar
  31. 1976.
    CHOWLA, S. & FRIEDLANDER, J.B. Class numbers and quadratic residues. Glasgow Math. J., 17, 1976, 47–52.MathSciNetMATHCrossRefGoogle Scholar
  32. 1978.
    IWANIEC, H. Almost-primes represented by quadratic polynomials. Invent. Math., 47, 1978, 171–188.MathSciNetMATHCrossRefGoogle Scholar
  33. 1978.
    SLOWINSKI, D. Searching for the 27th Mersenne prime. J. Recr. Math., 11, 1978/9, 258–261.MathSciNetGoogle Scholar
  34. 1980.
    FELTHI, C. Non-nullité des fonctions zeta des corps quadratiques réels pour 0 < s < 1. C.R. Acad. Sci. Paris, Ser. A, 291, 1980, 623–625.MathSciNetGoogle Scholar
  35. 1980.
    LENSTRA, Jr., H.W. Primality testing. Studieweek Getaltheorie en Computers. Stichting Math. Centrum, Amsterdam, 1980.Google Scholar
  36. 1981.
    POWELL, B. Problem 6384 (Numbers of the form mP—n). Amer. Math. Monthly, 89, 1982, p. 278.CrossRefGoogle Scholar
  37. 1982.
    ISRAEL, R.B. Solution of problem 6384. Amer. Math. Monthly, 90, 1983, p. 650.MathSciNetGoogle Scholar
  38. 1982.
    SCHINZEL, A. Selected Topics on Polynomials. Univ. of Michigan Press, Ann Arbor, 1982.MATHGoogle Scholar
  39. 1983.
    ADLEMAN, L.M. & ODLYZKO, A.M. Irreducibility testing and factorization of polynomials. Math. Comp., 41, 1983, 699–709.MathSciNetMATHCrossRefGoogle Scholar
  40. 1983.
    SCHROEDER, M.R. Where is the next Mersenne prime hiding? Math. Intelligencer, 5, No. 3, 1983, 31–33.MathSciNetMATHCrossRefGoogle Scholar
  41. 1983.
    WAGSTAFF, Jr., S.S. Divisors of Mersenne numbers. Math. Comp., 40, 1983, 385–397.MathSciNetMATHCrossRefGoogle Scholar
  42. 1984.
    GUPTA, R. & RAM MURTY, P.M. A remark on Artin’s conjecture. Invent. Math., 78, 1984, 127–130.MathSciNetMATHCrossRefGoogle Scholar
  43. 1984.
    MCCURLEY, K.S. Prime values of polynomials and irreducibility testing. Bull. Amer. Math. Soc., 11, 1984, 155–158.MathSciNetMATHCrossRefGoogle Scholar
  44. 1986.
    MCCURLEY, K.S. The smallest prime value of x n + a. Can. J. Math., 38, 1986, 925–936.MathSciNetMATHCrossRefGoogle Scholar
  45. 1986.
    MCCURLEY, K.S. Polynomials with no small prime values. Proc. Amer. Math. Soc., 97, 1986, 393–395.MathSciNetMATHCrossRefGoogle Scholar
  46. 1987.
    MOLLIN, R.A. Necessary and sufficient conditions for the class number of a real quadratic field to be 1, and a conjecture of Chowla. Proc. Amer. Math. Soc., 101, 1987 (to appear).Google Scholar
  47. 1987.
    MOLLIN, R.A. & WILLIAMS, H.C. A conjecture of S. Chowla via the generalized Riemann hypothesis. Proc. Amer. Math. Soc., 101, 1987 (to appear).Google Scholar
  48. 1987.
    MOLLIN, R.A. & WILLIAMS, H.C. On prime valued polynomials and class numbers of real quadratic fields. Preprint, University of Calgary, 1987.Google Scholar
  49. 1987.
    RAM MURTY, P.M. & SRINIVASAN, S. Some remarks on Artin’s conjecture. Can. Math. Bull. 30, 1987, 80–85.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations