Advertisement

Which Special Kinds of Primes have Been Considered?

  • Paulo Ribenboim

Abstract

We have already encountered several special kinds of primes, for example, those which are Fermat numbers, or Mersenne numbers (see Chapter 2). Now I shall discuss other families of primes, among them the regular primes, the Sophie Germain primes, the Wieferich primes, the Wilson primes, the prime repunits, the primes in secondorder linear recurring sequences.

Keywords

Special Kind Class Number Arithmetic Progression Symplectic Group Fermat Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1986.
    LUCAS, E. Théorie des fonctions numériques simplement périodiques. Amer. J. Math., 1, 1878, 185–240 and 289–321.Google Scholar
  2. 1902.
    BACHMANN, P. Niedere Zahlentheorie, Vol. II. Teubner, Leipzig, 1902. Reprinted by Chelsea, Bronx, N.Y., 1968.Google Scholar
  3. 1917.
    POLLACZEK, F. Uber den grossen Fermat’schen Satz. Sitzungsber. Akad. d. Wiss. Wien, Abt. IIa, 126, 1917, 45–59.MATHGoogle Scholar
  4. 1937.
    HALL, Jr., M. Divisors of second-order sequences. Bull. Amer. Math. Soc., 43, 1937, 78–80.MathSciNetCrossRefGoogle Scholar
  5. 1940.
    KRASNER, M. À propos du critère de Sophie Germain — Furtwängler pour le premier cas du théorème de Fermat. Mathematica Cluj, 16, 1940, 109–114.MathSciNetMATHGoogle Scholar
  6. 1948.
    GUNDERSON, N.G. Derivation of Criteria for the First Case of Fermat’s Last Theorem and the Combination of these Criteria to Produce a New Lower Bound for the Exponent. Ph.D. Thesis, Cornell University, 1948, 111 pages.Google Scholar
  7. 1951.
    DÉNES, P. An extension of Legendre’s criterion in connection with the first case of Fermat’s last theorem. Publ. Math. Debrecen, 2, 1951, 115–120.MathSciNetMATHGoogle Scholar
  8. 1952.
    ERDöS, P. & mirsky, L. The distribution of values of the divisor function d(n). Proc. London Math. Soc., (3), 2, 1952, 257–271.MathSciNetMATHCrossRefGoogle Scholar
  9. 1953.
    GOLDBERG, K. A table of Wilson quotients and the third Wilson prime. J. London Math. Soc., 28, 1953, 252–256.MathSciNetMATHCrossRefGoogle Scholar
  10. 1954.
    WARD, M. Prime divisors of second order recurring sequences. Duke Math. J., 21, 1954, 607–614.MathSciNetMATHCrossRefGoogle Scholar
  11. 1954.
    WARD, M. Prime divisors of second order recurring sequences. Duke Math. J., 21, 1954, 607–614.MathSciNetMATHCrossRefGoogle Scholar
  12. 1956.
    OBLÁTH, R. Une propriété des puissances parfaites. Mathesis, 65, 1956, 356–364.MathSciNetMATHGoogle Scholar
  13. 1959.
    SIERPINSKI, W. Sur les nombres premiers ayant des chiffres initiaux et finals donnes. Acta Arithm., 5, 1959, 265–266.MathSciNetMATHGoogle Scholar
  14. 1969.
    SIERPIńSKI, W. Sur un problème concernant les nombres k 2n+ 1. Elem. d. Math., 15, 1960, 73–74.MATHGoogle Scholar
  15. 1960.
    WALL, D.D. Fibonacci series modulo m. Amer. Math. Monthly, 67, 1960, 525–532.MathSciNetMATHCrossRefGoogle Scholar
  16. 1961.
    AIGNER, A. Folgen der Art ar n + b welche nur teilbare Zahlen liefern. Math. Nachr., 23, 1961, 259–264.MATHGoogle Scholar
  17. 1961.
    WARD, M. The prime divisors of Fibonacci numbers. Pacific J. Math., 11, 1961, 379–386.MathSciNetMATHGoogle Scholar
  18. 1963.
    BRILLHART, J. Some miscellaneous factorizations. Math. Comp., 17, 1963, 447–450.MATHCrossRefGoogle Scholar
  19. 1963.
    PEARSON, E.H. On the congruences (p-1)! — —1 and 2P-1 ≡ 1 (mod p 2). Math. Comp., 17, 1963, 194–195.MATHGoogle Scholar
  20. 1963.
    SELFRIDGE, J.L. Solution to problem 4995 (proposed by O. Ore). Amer. Math. Monthly, 70, 1963, p. 101.MathSciNetCrossRefGoogle Scholar
  21. 1963.
    VOROB’EV, N.N. Fibonacci Numbers. Heath & Co., Boston, 1963.Google Scholar
  22. 1964.
    GRAHAM, R.L. A Fibonacci-like sequence of composite numbers. Math. Mag., 37, 1964, 322–324.MATHCrossRefGoogle Scholar
  23. 1965.
    KLOSS, K.E. Some number theoretic calculations. J. Res. Nat. Bureau of Stand., B, 69, 1965, 335–336.MathSciNetMATHGoogle Scholar
  24. 1965.
    ROTKIEWICZ, A. Sur les nombres de Mersenne dépourvus de diviseurs carrés et sur les nombres naturels n tels que n 2 |2n —2. Mathem. Vecnik, (2), 17, 1965, 78–80.MathSciNetGoogle Scholar
  25. 1966.
    HASSE, H. Über die Dichte der Primzahlen p, fur die eine vorgegebene ganzrationale Zahl a 0 von gerader bzw. ungerader Ordnung mod p ist. Math. Ann., 168, 1966, 19–23.MathSciNetCrossRefGoogle Scholar
  26. 1966.
    KRUYSWIJK, D. On the congruence u p-1 ≡ 1 (mod p 2) (in Dutch). Math. Centrum Amsterdam, 1966, 7 pages.Google Scholar
  27. 1967.
    WARREN, L.J. & BRAY, H. On the square-freeness of Fermat and Mersenne numbers. Pacific J. Math., 22, 1967, 563–564.MathSciNetMATHGoogle Scholar
  28. 1968.
    PUCCIONI, S. Un teorema per una resoluzione parziale del famoso teorema di Fermat. Archimede 20, 1968, 219–220.MathSciNetMATHGoogle Scholar
  29. 1970.
    GOLOMB, S.W. Powerful numbers. Amer. Math. Monthly, 77, 1970, 848–852.MathSciNetMATHCrossRefGoogle Scholar
  30. 1971.
    BRILLHART, J., TONASCIA, J., & WEINBERGER, P.J. On the Fermat quotient. Computers in Number Theory (edited by A.L. Atkin & B.J. Birch), 213–222. Academic Press, New York, 1971.Google Scholar
  31. 1971.
    UCHIDA, K. Class numbers of imaginary abelian number fields, III. Tôhoku Math. J., 23, 1971, 573–580.MathSciNetMATHCrossRefGoogle Scholar
  32. 1972.
    IWASAWA, K. Lectures on p-adic L-functions. Annals of Math. Studies, Princeton Univ. Press, Princeton, 1972.MATHGoogle Scholar
  33. 1972.
    MASLEY, J.M. On the Class Number of Cyclotomic Fields. Ph.D. Thesis, Princeton Univ., 1972, 51 pages.Google Scholar
  34. 1973.
    VAUGHAN, R.C. A remark on the divisor function d(n). Glasgow Math. J., 14, 1973, 54–55.MathSciNetMATHCrossRefGoogle Scholar
  35. 1974.
    ANGELL, I.O. & GODWIN, H.J. Some factorizations of 10n ± 1. Math. Comp., 28, 1974, 307–308.MathSciNetMATHGoogle Scholar
  36. 1974.
    BORUCKI, L.J. & DIAZ, J.B. A note on primes, with arbitrary initial or terminal decimal ciphers in Dirichlet arithmetic progressions. Amer. Math. Monthly, 81, 1974, 1001–1002.MathSciNetMATHCrossRefGoogle Scholar
  37. 1975.
    ERDÖS, P. Problems and results on consecutive integers. Eureka, 38, 1975/6, 3–8.Google Scholar
  38. 1975.
    JOHNSON, W. Irregular primes and cyclotomic invariants. Math. Comp., 29, 1975, 113–120.MathSciNetMATHCrossRefGoogle Scholar
  39. 1975.
    METSANKYLA, T. On the cyclotomic invariants of Iwasawa. Math. Scand., 37, 1975, 61–75.MathSciNetGoogle Scholar
  40. 1976.
    ERDOS, P. Problems and results on consecutive integers. Publ. Math. Debrecen, 23, 1976, 271–282.MathSciNetGoogle Scholar
  41. 1976.
    MASLEY, J.M. & MONTGOMERY, H.L. Unique factorization in cyclotomic fields. Journal f. d. reine u. angew. Math., 286/7, 1976, 248–256.MathSciNetGoogle Scholar
  42. 1976.
    MENDELSOHN, N.S. The equation ϕ(x) = k. Math. Mag., 49, 1976, 37–39.MathSciNetMATHCrossRefGoogle Scholar
  43. 1976.
    STEPHENS, P.J. Prime divisors of second order linear recurrences, I, II. J. Nb. Th., 8, 1976, 313–345.MathSciNetMATHGoogle Scholar
  44. 1977.
    JOHNSON, W. On the non-vanishing of Fermat’s quotient (mod p). Journal f. d. reine u. angew. Math. 292, 1977, 196–200.MATHGoogle Scholar
  45. 1977.
    POMERANCE, C. On composite n for which ϕ(n) | n-1, II. Pacific J. Math., 69, 1977, 177–186.MathSciNetGoogle Scholar
  46. 1977.
    POWELL, B. Problem E 2631 (Prime satisfying Mirimanoff’s condition). Amer. Math. Monthly, 84, 1977, p. 57.MathSciNetCrossRefGoogle Scholar
  47. 1978.
    DE LEON, M.J. Solution of problem E 2631. Amer. Math. Monthly, 85, 1978, 279–280.MathSciNetCrossRefGoogle Scholar
  48. 1978.
    METSANKYLA, T. Iwasawa invariants and Kummer congruences. J. Nb. Th., 10, 1978, 510–522.MathSciNetGoogle Scholar
  49. 1978.
    WAGSTAFF, Jr., S.S. The irregular primes to 125000. Math. Comp., 32, 1978, 583–591.MathSciNetMATHGoogle Scholar
  50. 1978.
    WILLIAMS, H.C. Some primes with interesting digit patterns. Math. Comp., 32, 1978, 1306–1310.MathSciNetMATHCrossRefGoogle Scholar
  51. 1979.
    BAYER, P. Sobre el indice de irregularidad de los números primos. Collect. Math., 30, 1979, 11–20.MathSciNetMATHGoogle Scholar
  52. ERDÖS, P. & ODLYZKO, A.M. On the density of odd integers of the form (p-1)2-nn and related questions. J. Nb. Th., 11, 1979, 257–.MATHGoogle Scholar
  53. 1979.
    FERRERO, B. & WASHINGTON, L.C. The Iwasawa invariant μ vanishes for abelian number fields. Ann. Math., 109, 1979, 377–395.MathSciNetMATHCrossRefGoogle Scholar
  54. 1979.
    RIBENBOIM, P. 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York, 1979.MATHCrossRefGoogle Scholar
  55. 1979.
    WILLIAMS, H.C. & SEAH, E. Some primes of the form (an-1)/(a-1). Math. Comp., 33, 1979, 1337–1342.MathSciNetMATHGoogle Scholar
  56. 1980.
    NEWMAN, M., SHANKS, D. & WILLIAMS, H.C. Simple groups of square order and an interesting sequence of primes. Acta Arithm., 38, 1980, 129–140.MathSciNetMATHGoogle Scholar
  57. 1980.
    POWELL, B. Primitive densities of certain sets of primes. J. Nb. Th., 12, 1980, 210–217.MATHGoogle Scholar
  58. 1980.
    SKULA, L. Index of irregularity of a prime. Journal f. d. reine u. angew. Math., 315, 1980, 92–106.MathSciNetMATHGoogle Scholar
  59. 1980.
    WASHINGTON, L.C. Introduction to Cyclotomic Fields. Springer-Verlag, New York, 1980.Google Scholar
  60. 1981.
    LEHMER, D.H. On Fermat’s quotient, base two. Math. Comp., 36, 1981, 289–290.MathSciNetMATHGoogle Scholar
  61. 1981.
    SHANKS, D. & WILLIAMS, H.C. Gunderson’s function in Fermat’s last theorem. Math. Comp., 36, 1981, 291–295.MathSciNetMATHGoogle Scholar
  62. 1981.
    SPIRO, C.A. The Frequency with which an Integral-Valued, Prime-Independent, Multiplicative or Additive Function of n Divides a Polynomial Function of n. Ph.D. Thesis, University of Illinois, Urbana-Champaign, 1981, 179 pages.Google Scholar
  63. 1982.
    POWELL, B. Problem E 2948 (p e || x p-1 - y p-1, 2pe, p prime occurs frequently). Amer. Math. Monthly, 89, 1982, p. 334.CrossRefGoogle Scholar
  64. 1982.
    POWELL, B. Problem E 2956 (The existence of small prime solutions of x p-1 ≢ 1 (mod p 2)). Amer. Math. Monthly, 89, 1982, p. 498.CrossRefGoogle Scholar
  65. 1982.
    WILLIAMS, H.C. The influence of computers in the development of number theory. Comp. & Maths. with Appl., 8, 1982, 75–93.MATHCrossRefGoogle Scholar
  66. 1982.
    YATES, S. Repunits and Repetends. Star Publ. Co., Boynton Beach, Florida, 1982.MATHGoogle Scholar
  67. 1983.
    JAESCHKE, G. On the smallest k such that k • 2N + 1 are composite. Corrigendum. Math. Comp., 40, 1983, 381–384; 45, 1985, p. 637.MathSciNetMATHGoogle Scholar
  68. 1983.
    KELLER, W. Factors of Fermat numbers and large primes of the form k • 2n + 1. Math. Comp., 41, 1983, 661–673.MathSciNetMATHGoogle Scholar
  69. 1983.
    RIBENBOIM, P. 1093. Math. Intelligencer, 5, No. 2, 1983, 28–34.MathSciNetMATHCrossRefGoogle Scholar
  70. 1984.
    DAVIS, J.A. & HOLDRIDGE, D.B. Most wanted factorization using the quadratic sieve. Sandia Nat. Lab. Report Sand 84–1658, 1984.Google Scholar
  71. 1984.
    HEATH-BROWN, D.R. The divisor function at consecutive integers. Mathematika, 31, 1984, 141–149.MathSciNetMATHCrossRefGoogle Scholar
  72. 1984.
    MATTICS, L.E. Solution of problem E 2948. Amer. Math. Monthly, 91, 1984, 650–651.MathSciNetCrossRefGoogle Scholar
  73. 1985.
    ADLEMAN, L.M. & HEATH-BROWN, D.R. The first case of Fermat’s last theorem. Invent. Math., 79, 1985, 409–416.MathSciNetMATHCrossRefGoogle Scholar
  74. 1985.
    FOUVRY, E. Théorème de Brun-Titchmarsh; application au théorème de Fermat. Invent. Math., 79, 1985, 383–407.MathSciNetMATHCrossRefGoogle Scholar
  75. 1985.
    GRANVILLE, A.J. Refining the conditions on the Fermat quotient. Math. Proc. Cambridge Phil. Soc., 98, 1985, 5–8.MathSciNetMATHCrossRefGoogle Scholar
  76. 1985.
    KELLER, W. The 17th prime of the form 5 • 2n + 1. Abstracts Amer. Math. Soc. 6, No. 1, 1985, p. 121.Google Scholar
  77. 1985.
    LAGARIAS, J.C. The set of primes dividing the Lucas numbers has density 2/3. Pacific J. Math., 118, 1985, 19–23.MathSciNetGoogle Scholar
  78. 1985.
    RIBENBOIM, P. An extension of Sophie Germain’s method to a wide class of diophantine equations. Journal f. d. reine u. angew. Math., 356, 1985, 49–66.MathSciNetMATHGoogle Scholar
  79. 1986.
    GRANVILLE, A.J. Powerful numbers and Fermat’s last theorem. C.R. Math. Rep. Acad. Sci. Canada, 8, 1986, 215–218.MathSciNetMATHGoogle Scholar
  80. 1986.
    MOLLIN, R.A. & WALSH, P.G. On powerful numbers. Intern. J. Math. & Math. Sci., 9, 1986, 801–806.MathSciNetMATHCrossRefGoogle Scholar
  81. 1986.
    SKULA, L. A note on the index of irregularity. J. Nb. Th., 22, 1986, 125–138.MathSciNetMATHGoogle Scholar
  82. 1986.
    SPIRO, C.A. An iteration problem involving the divisor function. Acta Arithm., 46, 1986, 17–27.MathSciNetGoogle Scholar
  83. 1986.
    TZANAKIS, N. Solution to problem E 2956. Amer. Math. Monthly, 93, 1986, p. 569.MathSciNetGoogle Scholar
  84. 1986.
    WILLIAMS, H.C. & DUBNER, H. The primality of R1031. Math. Comp., 47, 1986, 703–712.MathSciNetMATHGoogle Scholar
  85. 1987.
    GRANVILLE, A.J. Diophantine Equations with Variable Exponents with Special Reference to Fermat’s Last Theorem. Ph.D. Thesis, Queen’s University, Kingston, 1987, 207 pages.Google Scholar
  86. 1987.
    RIBENBOIM, P. Impuissants devant les puissances. Expo. Math., 5, 1987 (to appear).Google Scholar
  87. 1987.
    TANNER, J.W. & WAGSTAFF, Jr., S.S. New congruences for the Bernoulli numbers. Math. Comp., 48, 1987, 341–350.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations