Abstract
As I have already stressed, the various proofs of existence of infinitely many primes are not constructive and do not give an indication of how to determine the nth prime number. Equivalently, the proofs do not indicate how many primes are less than any given number N.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
CAUCHY, A.L. Demonstration générale du théorème de Fermat sur les nombres polygônes. Bull. Soc. Philomatique, 1815, 196–197. Reprinted in Oeuvres, (2), Vol. 2, 202–204. Gauthier-Villars, Paris, 1903.
DIRICHLET, G.L. Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abh. d. Königl. Akad. d. Wiss., 1837, 45–81. Reprinted in Werke, Vol. I, 315–350. G. Reimer, Berlin, 1889.
MEISSEL, E.D.F. Berechnung der Menge von Primzahlen, welche innerhalb der ersten Milliarde natürlicher Zahlen vorkommen. Math. Ann., 25, 1885, 251–257.
SYLVESTER, J.J. On arithmetical series. Messenger of Math., 21, 1892, 1–19 and 87–120. Reprinted in Gesammelte Abhandlungen, Vol. III, 573–587. Springer-Verlag, New York, 1968.
WENDT, E. Elementarer Beweis des Satzes dass in jeder unbegrenzter arithmetischen Progression my + 1 unendlich viele Primzahlen vorkommen. Journal f. d. reine u. angew. Math., 115, 1895, 85–88.
VON KOCH, H. Sur la distribution des nombres premiers. Acta Math., 24, 1901, 159–182.
WOLFSKEHL, P. Ueber eine Aufgabe der elementaren Arithmetik. Math. Ann., 54, 1901, 503–504.
TORELLI, G. Sulla totalità dei numeri primi fino a un limite assegnato. Atti d. Reale Acad. d. Sci. Fis. e Mat. di Napoli, (2), 11, 1902, 1–222.
LANDAU, E. Neuer Beweis des Primzahlsatzes und Beweis des Primidealsatzes. Math. Ann., 56, 1903, 645–670.
HILBERT, D. Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem). Math. Ann., 67, 1909, 281–300. Reprinted in Gesammelte Abhandlungen, Vol. I, 510–527, 2nd edition, Chelsea, Bronx, N.Y., 1965.
LANDAU, E. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, Leipzig, 1909. Reprinted by Chelsea, Bronx, N.Y., 1974.
LEHMER, D.N. List of Prime Numbers from 1 to 10,006,721. Reprinted by Hafner, New York, 1956.
LEHMER, D.N. Factor Table for the First Ten Millions Containing the Smallest Factor of Every Number not Divisible by 2, 3, 5, or 7, Between the Limits 0 and 10,017,000. Reprinted by Hafner, New York, 1956.
WIEFERICH, A. Beweis des Satzes, dass sich eine jede ganze Zahl als Summe von höchstens neun positiven Kuben darstellen lässt. Math. Ann., 66, 1909, 95–101.
SCHUR, I. Uber die Existenz unendlich vieler Primzahlen in einiger speziellen arithmetischen Progressionen. Sitzungsber. Berliner Math. Ges. 11, 1912, 40–50.
STRIDSBERG, E. Sur la démonstration de M. Hilbert du théorème de Waring. Math. Ann., 72, 1912, 145–152.
Coblyn Sur les couples de nombres premiers. Soc. Math. France, C.R., 1913, 55–56.
LITTLEWOOD, J.E. Sur la distribution des nombres premiers. C.R. Acad. Sci. Paris, 158, 1914, 1869–1872.
WEYL, H. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77, 1916, 313–352.
BRUN, V. Le crible d’Eratosthène et le théorème de Goldbach. C.R. Acad. Sci. Paris, 168, 1919, 544–546.
BRUN, V. La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 +... où les dénominateurs sont “nombres premiers jumeaux” est convergente ou finie. Bull. Sci. Math., (2), 43, 1919, 100–104 and 124–128.
RAMANUJAN, S. A proof of Bertrand’s postulate. J. Indian Math. Soc., 11, 1919, 181–182. Reprinted in Collected Papers (edited by G.H. Hardy, P.V. Seshu Aiyar, & B.M. Wilson), 208–209. Cambridge Univ. Press, Cambridge, 1927. Reprinted by Chelsea, Bronx, N.Y., 1962.
BRUN, V. Le crible d’Erathostène et la théorème de Goldbach. Videnskapsselskapets Skrifter Kristiania, Mat.-nat. Kl. 1920, No. 3, 36 pages.
HARDY, G.H. & LITTLEWOOD, J.E. A new solution of Waring’s problem. Quart. J. Math., 1920, 48, 272–293. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 382–393. Clarendon Press, Oxford, 1966.
HARDY, G.H. & LITTLEWOOD, J.E. Some problems of “Partitio Numerorum”, I: A new solution of Waring’s Problem. Nachr. Königl. Ges. d. Wiss. zu Göttingen, 1920, 33–54. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 405–426. Clarendon Press, Oxford, 1966.
HARDY, G.H. & LITTLEWOOD, J.E. Some problems of “Partitio Numerorum”, II: Proof that every number is the sum of at most 21 biquadrates. Math. Zeits., 9, 1921, 14–27. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 427–440. Clarendon Press, Oxford, 1966.
KAMKE, E. Verallgemeinerung des WaringHilbertschen Satzes. Math. Ann., 83, 1921, 85–112.
HARDY, G.H. & LITTLEWOOD, J.E. Some problems of “Partitio Numerorum”, IV: The singular series in Waring’s Problem and the value of the number G(k). Math. Zeits., 12, 1922, 161–188. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 441–468. Clarendon Press, Oxford, 1966.
HARDY, G.H. & LITTLEWOOD, J.E. Some problems of “Partitio Numerorum”, III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 441–468. Clarendon Press, Oxford, 1966.
HARDY, G. H. & LITTLEWOOD, J.E. Some problems of “Partitio Numerorum”, III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 561–630. Clarendon Press, Oxford, 1966.
HARDY, G.H. & Littlewood, J.E. Some problems of “Partitio Numerorum”, III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 441–468. Clarendon Press, Oxford, 1966.
HARDY, G. H. & LITTLEWOOD, J.E. Some problems of “Partitio Numerorum”, III: On the expression of a number as a sum of primes. Acta Math., 44, 1923, 1–70. Reprinted in Collected Papers of G.H. Hardy, Vol. I, 561–630. Clarendon Press, Oxford, 1966.
NAGELL, T. Zahlentheoretische Notizen I, Ein Beitrag zur Theorie der höheren Kongruenzen. Vidensk. Skrifter, ser. I, Math. Nat. Kl., No. 13, Kristiania, 1923, 3–6.
RADEMACHER, H. Beiträge zur Viggo Brunschen Methode in der Zahlentheorie. Abh. Math. Sem. Univ. Hamburg, 3, 1924, 12–30. Reprinted in Collected Papers (edited by E. Grosswald), Vol. I, 280–288. M.I.T. Press, Cambridge, 1974.
SCHOENBERG, I.J. Uber die asymptotische Verteilung reeller Zahlen (mod 1). Math. Zeits., 28, 1928, 171–199.
WINTNER, A. Uber den Konvergenzbegriff der mathematischen Statistik. Math. Zeits., 28, 1928, 476–480.
ERDöS, P. Beweis eines Satzes von Tschebychef. Acta Sci. Math. Szeged, 5, 1930, 194–198.
HOHEISEL, G. Primzahlprobleme in der Analysis. Sitzungsberichte Berliner Akad. d. Wiss., 1930, 580–588.
SCHNIRELMANN, L. Über additive Eigenschaften von Zahlen. Ann. Inst. Polytechn. Novocerkask, 14, 1930, 3–28 and Math. Ann., 107, 1933, 649–690.
TITCHMARSH, E.C. A divisor problem. Rend. Cir. Mat. Palermo, 54, 1930, 414–429.
WESTZYNTHIUS, E. Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind. Comm. Phys. Math. Helsingf ors, (5), 25, 1931, 1–37.
LANDAU, E. Uber den Wienerschen neuen Weg zum Primidealsatz. Sitzungsber. Berliner Akad. d. Wiss., 1932, 514–521.
SKEWES, S. On the difference π(x) — li(x). J. London Math. Soc., 8, 1933, 277–283.
CHOWLA, S. On the least prime in an arithmetic progression. J. Indian Math. Soc., (2), 1, 1934, 1–3.
ISHIKAWA, H. Über die Verteilung der Primzahlen. Sci. Rep. Tokyo Bunrika Daigaku, A, 2, 1934, 27–40.
ERDOS, P. On the density of some sequences of numbers, I. J. London Math. Soc., 10, 1935, 120–125.
ERDOS, P. On the difference of consecutive primes. Quart. J. Pure & Appl. Math., Oxford, 6, 1935, 124–128.
ERDOS, P. On the normal number of prime factors of p —1 and some related problems concerning Euler’s ϕ-function. Quart. J. Pure & Appl. Math., Oxford, 6, 1935, 205–213.
VINOGRADOV, I.M. On Waring’s problem. Annals of Math., 36, 1935, 395–405.
DICKSON, L.E. Solution of Waring’s problem. Amer. J. Math., 58, 1936, 530–535. Reprinted in The Collected Mathematical Papers (edited by A.A. Albert), Vol. III, 290–295. Chelsea, Bronx, N.Y., 1975.
HEILBRONN, H. Uber das Waringsche Problem. Acta Arithm., 1, 1936, 212–221.
CRAMER, H. On the order of magnitude of the difference between consecutive prime numbers. Acta Arithm., 2, 1937, 23–46.
ERDOS, P. On the density of some sequences of numbers, II. J. London Math. Soc., 12, 1937, 7–11.
INGHAM, A.E. On the difference between consecutive primes. Quart. J. Pure & Appl. Math., Oxford, Ser. 2, 8, 1937, 255–266.
LANDAU, E. Über einige neuere Fortschritte der additiven Zahlentheorie. Cambridge Univ. Press, Cambridge, 1937. Reprinted by Stechert-Hafner, New York, 1964.
TURAN, P. Uber die Primzahlen der arithmetischen Progressionen. Acta Sci. Math. Szeged, 8, 1937, 226–235.
VAN DER CORPUT, Sur l’h ypothese de Goldbach pour J.G. presque tous les nombres pairs. Acta Arithm., 2, 1937, 266–290.
VINOGRADOV, I.M. Representation of an odd number as the sum of three primes (in Russian). Dokl. Akad. Nauk SSSR, 15, 1937, 169–172.
VINOGRADOV, I.M. Some new problems in the theory of primes (in Russian). Doklady Akad. Nauk SSSR, 16, 1937, 131–132.
VINOGRADOV, I.M. Some theorems concerning the theory of primes (in Russian). Mat. Sbornik, N.S., 2, (44), 1937, 179–195.
ERDOS, P. On the density of some sequences of numbers, III. J. London Math. Soc., 13, 1938, 119–127.
ESTERMANN, T. Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc., 44, 1938, 307–314.
HARDY, G.H. & Edmund Landau. Heilbronn, H. J. London Math. Soc., 13, 1938, 302–310. Reprinted in Collected Papers of G.H. Hardy, Vol. VII, 762–770. Clarendon Press, Oxford, 1979.
POULET, P. Table des nombres composes vérifiant le théorème de Fermat pour le module 2, jusqu’ à 100.000.000. Sphinx, 8, 1938, 52–52 Corrections: Math. Comp., 25, 1971, 944–945 and 26, 1972, p. 814.
RANKIN, R.A. The difference between consecutive prime numbers. J. London Math. Soc., 13, 1938, 242–247.
ROSSER, J.B. The nth prime is greater thannlogn. Proc. London Math. Soc. 45, 1938, 21–44.
TSCHUDAKOFF, N.G. On the density of the set of even integers which are not representable as a sum of two odd primes (in Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 1, 1938, 25–40.
VINOGRADOV, I.M. Some general theorems about primes (in Russian). Tray. Inst. Math. Tbilissi, 3, 1938, 35–67.
DAVENPORT, H. On Waring’s problem for cubes. Acta Math., 71, 1939, 123–143.
DAVENPORT, H. On Waring’s problem for fourth powers. Annals of Math., 40, 1939, 731–747.
DICKSON, L.E. All integers, except 23 and 239, are sums of 8 cubes. Bull. Amer. Math. Soc., 45, 1939, 588–591. Reprinted in The Collected Mathematical Papers (edited by A.A. Albert), Vol. V, 66–69. Chelsea, Bronx, N.Y., 1975.
VAN DER CORPUT, Über Summen von Primzahlen J.G. und Primzahlquadraten. Math. Ann., 116, 1939, 1–50.
ERDÖS, P. The difference of consecutive primes. Duke Math. J., 6, 1940, 438–441.
INGHAM, A.E. On the estimation of N(σ,T). Quart. J. Math., Oxford, 11, 1940, 291–292.
PILLAI, S.S. On Waring’s problem: g(6) = 73. Proc. Indian Acad. Sci., A, 12, 1940, 30–40.
NARASIMHAMURTI, V On Waring’s problem for 8th, 9th and 10th powers. J. Indian Math. Soc., 5, 1941, p. 122.
DAVENPORT, H. On Waring’s problem for fifth and sixth powers. Amer. J. Math., 64, 1942, 199–207.
MANN, H.B. A proof of the fundamental theorem of sums of sets of positive integers. Annals of Math., 43, 1942, 523–527.
RUBUGUNDAY, R. On g(k) in Waring’s problem. J. Indian Math. Soc., N.S., 6, 1942, 192–198.
ARTIN, E. & SCHERK, P. On the sums of two sets of integers. Annals of Math., 44, 1943, 138–142. Reprinted in Collected Papers (edited by S. Lang & J.T. Tate), 346–350. Addison-Wesley, Reading, Mass., 1965.
LINNIK, YU.V. An elementary solution of a problem of Waring by Schnirelmann’s method. Mat. Sbornik, 12 (54), 1943, 225–230.
CHOWLA, S. There exists an infinity of 3-combinations of primes in A. P. Proc. Lahore Phil. Soc., 6, 1944, 15–16.
LINNIK, YU.V. On the least prime in an arithmetic progression I. The basic theorem (in Russian). Mat. Sbornik, 15 (57), 1944, 139–178.
NIVEN, I. An unsolved case of the Waring problem. Amer. J. Math., 66, 1944, 137–143.
ERDOS, R. Some remarks on Euler’s ϕ-function and some related problems. Bull. Amer. Math. Soc., 51, 1945, 540–544.
BRAUER, A. On the exact number of primes below a given limit. Amer. Math. Monthly, 9, 1946, 521–523.
JOFFE, S.A. Review of Kulik’s “Magnus Canon Divisorum...” Math. Comp., 2, 1946/1947, 139–140.
KHINCHIN, A. YA. Three Pearls of Number Theory. Original Russian edition in Ogiz, Moscow, 1947. Translation into English published by Graylock Press, Baltimore, 1952.
RÉNYI, A. On the representation of even numbers as the sum of a prime and an almost prime. Dokl. Akad. Nauk SSSR, 56, 1947, 455–458.
VINOGRADOV, I.M. The method of trigonometrical sums in the theory of numbers (in Russian). Tray. Inst. Math. Steklov, 23, 1947, 109 pages.
ERDÖs, P. & TURáN, P. On some new questions on the distribution of prime numbers. Bull. Amer. Math. Soc., 54, 1948, 371–378.
VINOGRADOV, I.M. Uber die Abschätzung trigonometrischer Summen mit Primzahlen. Izv. Akad. Nauk SSSR, Ser. Mat., 12, 1948, 225–248.
CLEMENT, P.A. Congruences for sets of primes. Amer. Math. Monthly, 56, 1949, 23–25.
ERDæS, P. Problems and results on the difference of consecutive primes. Publ. Math. Debrecen, 1, 1949, 33–37.
ERDÖS, P. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A., 35, 1949, 374–384.
ERDÖS, P. On the converse of Fermat’s theorem. Amer. Math. Monthly, 56, 1949, 623–624.
MOSER, L. A theorem on the distribution of primes. Amer. Math. Monthly, 56, 1949, 624–625.
RICHERT, H.E. Uber Zerfällungen in ungleiche Primzahlen. Math. Zeits., 52, 1949, 342–343.
SELBERG, A. An elementary proof of the prime number theorem. Annals of Math., 50, 1949, 305–313.
SELBERG, A. An elementary proof of Dirichlet’s theorem about primes in an arithmetic progression. Annals of Math., 50, 1949, 297–304.
SELBERG, A. An elementary proof of the prime number theorem for arithmetic progressions. Can. J. Math., 2, 1950, 66–78.
ERDOS, P. On some application of Brun’s method. Acta Sci. Math. Szeged, 13, 1950, 57–63.
ERDÖS, P. On almost primes. Amer. Math. Monthly, 57, 1950, 404–407.
HASSE, H. Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin, 1950.
SELBERG, A. The general sieve method and its place in prime number theory. Proc. Int. Congr. Math., Cambridge,
SHAPIRO, H.N. On a theorem of Selberg and generalization. Annals of Math., (2), 51, 1950, 485–497.
NAGELL, T. Introduction to Number Theory. Almqvist & Wiksell, Stockholm, 1964. Reprinted by Chelsea, Bronx, N.Y., 1964.
TITCHMARSH, E.C. The Theory of the Riemann ZetaFunction. Clarendon Press, Oxford, 1951.
WATSON, G.L. A proof of the seven cube theorem. J. London Math. Soc., 26, 1951, 153–156.
NAGURA, J. On the interval containing at least one prime number. Proc. Japan Acad., 28, 1952, 177–181.
PYATETSKII-SHAPIRO, I.I. On the distribution of prime numbers in sequence of the form [f(n)] (in Russian). Mat. Sbornik, N.S. 33 (75), 1953, 559–566.
RIEGER, G.J. Zur Hilbertschen Lösung der Waringschen Problems: Abschätzung von g(n). Arch. d. Math., 4, 1953, 275–281.
BREUSCH, R. Another proof of the prime number theorem. Duke M.J., 21, 1954, 49–53.
RIEGER, G.J. Zu Linniks Lösung des Waringsches Problems: Abschätzung von g(n). Math. Zeits., 60, 1954, 213–234.
FJELLSTEDT, L. Bemerkungen über gleichzeitige Lösbarkeit von Kongruenzen. Arkiv Mat., 3, 1955, 193–198.
RICCI, G. Recherches sur l’allure de la suite {(pn+1-pn)/log pn}. Coll. Th. Nombres Bruxelles 1955, 93–106. G. Thone, Liège, 1956.
SKEWES, S. On the difference π(x) - li(x), II. Proc. London. Math. Soc., 5, 1955, 48–70.
AMITSUR, S.A. On arithmetic functions. J. Anal. Math., 5, 1956/7, 273–314.
ERDOS, P. On pseudo-primes and Carmichael numbers. Publ. Math. Debrecen, 4, 1956, 201–206.
NIVEN, I. Irrational Numbers. Carus Math. Monographs, No. 11. Math. Assoc. of America, Washington, 1956.
OSTMANN, H.H. Additive Zahlentheorie (2 volumes). Springer-Verlag, Berlin, 1956 (2nd edition 1969).
HUA, L.K. Additive Theory of Prime Numbers. Inst. Math. Chinese Acad. Sciences, Peking, 1957. Translated into English by H.H. Ng. Amer. Math. Soc., Providence, 1965.
LEECH, J. Note on the distribution of prime numbers. J. London Math. Soc., 32, 1957, 56–58.
MAHLER, K. On the fractional parts of powers of real numbers. Matematika, 4, 1957, 122–124.
BAKER, C.L. & GRUENBERGER, E.J. Primes in the Thousandth Million. The Rand Corp., Santa Monica, 1958.
CHEN, J.R. On Waring’s problem for nth powers. Acta Math. Sinica, 8, 1958, 253–257;
CHEN, J.R. Chinese Math. Acta, 8, 1966/7, 849–853.
SCHINZEL, A. & SIERPINSKI, W. Sur certaines hypothèses concernant les nombres premiers. Acta Arithm., 4, 1958, 185–208;
SCHINZEL, A. & SIERPINSKI, W. Erratum, 5, 1959, p. 259.
BAKER, C.L. & GRUENBERGER, F.J. The First Six Million Prime Numbers. Microcard Found., Madison, 1959.
HUA, L.K. Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie. Enzykl. d. Math. Wiss., I2, Heft 13, t.l. Teubner, Leipzig, 1959.
KAC, M. Statistical Independence in Probability, Analysis and Number Theory. Carus Math. Monographs, No. 12, Math. Assoc. of America, Washington, 1959.
LEHMER, D.H. On the exact number of primes less than a given limit. Illinois J. Math., 3, 1959, 381–388. Reprinted in Selected Papers (edited by D. McCarthy), Vol. III, 1104–1111. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.
SHANKS, D. Quadratic residues and the distribution of primes. Math. Comp., 13, 1959, 272–284.
SCHINZEL, A. Démonstration d’une conséquence de l’hypothèse de Goldbach. Compositio Math., 14, 1959, 74–76.
SCHINZEL, A. Sur une conséquence de l’hypothèse de Goldbach. Izvestija Mat. Inst., Bulgarian Acad. Sci., 4, 1959, 35–38.
VINOGRADOV, I.M. On an upper bound for G(n) (in Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 23, 1959, 637–642.
JACOBSTHAL, E. Über Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist, I, II, III. Norske Videnskabsselskab Forhdl., 33, 1960, 117–139.
NEWMAN, D.J. A simplified proof of Waring’s conjecture. Michigan Math. J., 7, 1960, 291–295.
JURKAT, W.B. Eine Bemerkung zur Vermutung von Mertens. Machr. der Osterr. Math. Ges., Sondernummer Ber. V. Osterr. Math.-Kongress, Vienna, 1961, 11.
PRACHAR, K. Uber die kleinste Primzahl einer arithmetischen Reihe. Journal f. d. reine u. angew. Math., 206, 1961, 3–4.
ROTKIEWICZ, A. Démonstration arithmétique d’existence d’une infinité de nombres premiers de la forme nk + 1. L’enseign. Math., (2), 7, 1962, 277–280.
WRENCH, J.W. Evaluation of Artin’s constant and the twin-prime constant. Math. Comp., 15, 1961, 396–398.
ERDÖs, P. On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal. Math. Scand., 10, 1962, 163–170.
ROSSER, J.B. & SCHOENFELD, L. Approximate formulas for some functions of prime numbers. Illinois. J. Math., 6, 1962, 64–94.
SCHINZEL, A. Remark on a paper of K. Prachar, “Uber die kleinste Primzahl einer arithmetischen Reihe”. Journal f. d. reine u. angew. Math., 210, 1962, 121–122.
SEGAL, S. On n(x+y) ≤ π(x) + π(y). Trans. Amer. Math. Soc., 104, 1962, 523–527.
AYOUB, R.G. An Introduction to the Theory of Numbers. Amer. Math. Soc., Providence, R.I., 1963.
ESTERMANN, T. Note on a paper of A. Rotkiewicz. Acta Arithm., 8, 1963, 465–467.
KANOLD, H.J. Elementare Betrachtungen zur Primzahltheorie. Arch. Math., 14, 1963, 147–151.
NEUBAUER, G. Eine empirische Untersuchung zur Mertenssche Funktion. Numer. Math., 5, 1963, 1–13.
RANKIN, R.A. The difference between consecutive prime numbers, V. Proc. Edinburgh Math. Soc., (2), 13, 1963, 331–332.
ROTKIEWICZ, A. Sur les nombres pseudo-premiers de la forme ax + b. C.R. Acad. Sci. Paris, 257, 1963, 2601–2604.
WALFISZ, A.Z. Weylsche Exponentialsummen in der neueren Zahlentheorie. Veb Deutscher Verlag d. Wiss., Berlin, 1963.
CHEN, J.R. Waring’s problem for g(5) = 37. Sci. Sinica, 13, 1964, 1547–1568. Reprinted in Chinese Mathematics, 6, 1965, 105–127.
KANOLD, H.J. Uber Primzahlen in arithmetischen Folgen. Math. Ann., 156, 1964, 393–395
KANOLD, H.J. Math. Ann., 157, 1965, 358–362.
KAPFERER, H. Verifizierung des symmetrischen Teils der Fermatschen Vermutung für unendlich viele paarweise teilerfremde Exponenten E. Journal f. d. reine u. angew. Math., 214/5, 1964, 360–372.
ROHRBACH, H. & WEIS, J. Zum finiten Fall des Bertrandschen Postulats. Journal f. d. reine u. angew. Math., 214/5, 1964, 432–440.
SHEN, M.K. On checking the Goldbach conjecture. Nordisk Tidskr., 4, 1964, 243–245.
SIERPIńSKI, W. Elementary Theory of Numbers. Haf ner, New York, 1964.
STEMMLER, R.M. The ideal Waring theorem for exponents 401–200,000. Math. Comp., 18, 1964, 144–146.
BATEMAN, P.T. & LOW, M.E. Prime numbers in arithmetic progression with difference 24. Amer. Math. Monthly, 72, 1965, 139–143.
GELFOND, A.O. & LINNIK, Yu.V. Elementary Methods in Analytic Number Theory. Translated by A. Feinstein, revised and edited by L.J. Mordell. Rand McNally, Chicago, 1965.
PAN, C.D. On the least prime in an arithmetic progression. Sci. Record (N.S.), 1, 1957, 311–313.
ROTKIEWICZ, A. Les intervalles contenant les nombres pseudo premiers. Rend. Circ. Mat. Palermo (2), 14, 1965, 278–280.
STEIN, M.L. & STEIN, P.R. New experimental results on the Goldbach conjecture. Math. Mag., 38, 1965, 72–80.
STEIN, M.L. & STEIN, P.R. Experimental results on additive 2-bases. Math. Comp., 19, 1965, 427–434.
BEILER, A.H. Recreations in the Theory of Numbers (The Queen of Mathematics Entertains). Dover, New York, 1966.
CHEN, J.R. On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao, 17, 1966, 385–386.
BOMBIERI, E. & DAVENPORT, H. Small differences between prime numbers. Proc. Roy. Soc., A, 293, 1966, 1–18.
LEHMAN, R.S. On the difference n(x) — li(x). Acta Arithm., 11, 1966, 397–410.
JARDEN, D. Existence of arbitrarily long sequences of consecutive numbers in arithmetic progressions divisible by arbitrarily many different primes. Fibonacci Quart., 5, 1967, p. 287.
JONES, M.F., LAL, M. & BLUNDON, W.J. Statistics on certain large primes. Math. Comp., 21, 1967, 103–107.
KOLESNIK, G.A. The distribution of primes in sequences of the form [n c ] (in Russian). Mat. Zametki, 2, 1967, 117–128.
LANDER, L.J. & PARKIN, T.R. Consecutive primes in arithmetic progression. Math. Comp., 21, 1967, p. 489.
ROTKIEWICZ, A. On the pseudo-primes of the form ax + b Proc. Cambridge Phil. Soc., 63, 1967, 389–392.
SZYMICZEK, K. On pseudo-primes which are products of distinct primes. Amer. Math. Monthly, 74, 1967, 35–37.
HALBERSTAM, H. & Rotkiewicz, A. A gap theorem for pseudoprimes in arithmetic progressions. Acta Arithm., 13, 1968, 395–404.
GRÖLZ, W. Primteiler von Polynomen. Math. Ann., 181, 1969, 134–136.
MONTGOMERY, H.L. Zeros of L-functions. Invent. Math., 8, 1969, 346–354.
NAGELL, T. Sur les diviseurs premiers des polynômes. Acta Arithm., 15, 1969, 235–244.
RICHERT, H.E. Selberg’s sieve with weights. Mathematika, 16, 1969, 1–22.
ROSSER, J.B., YOHE, J.M. & SCHOENFELD, L. Rigorous computation of the zeros of the Riemann zeta-function (with discussion). Inform. Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. I, 70–76. North-Holland, Amsterdam, 1969.
SCHOENFELD, L. An improved estimate for the summatory function of the Möbius function. Acta Arithm., 15, 1969, 221–233.
WÓJCYK, J. A refinement of a theorem of Schur on primes in arithmetic progressions, III. Acta Arithm. 15, 1969, 193–197.
DRESSLER, R.E. A density which counts multiplicity. Pacific J. Math., 34, 1970, 371–378.
HORNFECK, B. Primteiler von Polynomen. Journal f. d. reine u. angew. Math., 243, 1970, p. 120.
MOTOHASHI, Y. A note on the least prime in an arithmetic progression with a prime difference. Acta Arithm., 17, 1970, 283–285.
SERRE, J.P. Cours d’Arithmétique. Presses Univ. France, Paris, 1970. English translation published by Springer-Verlag, New York, 1973.
ELLIOTT, P.D.T.A. & HALBERSTAM, H. The least prime in arithmetic progression. Studies in Pure Mathematics (edited by R. Rada), 59–61. Academic Press, London, 1971.
ELLISON, W.J. Waring’s problem. Amer. Math. Monthly, 78, 1971, 10–36.
GERST, I. & Brillhart, J. On prime divisors of polynomials. Amer. Math. Monthly, 78, 1971, 250–266.
MONTGOMERY, H.L. Topics in Multiplicative Number Theory. Lecture Notes in Math., #227. Springer-Verlag, New York, 1971.
SERGUSOV, I.S.A. On the problem of prime-twins (in Russian). Jaroslay. Gos. Ped. Inst. Ucen. Zap., 82, 1971, 85–86.
TITCHMARSH, E.C. The Theory of the Riemann Zeta Function. Clarendon Press, Oxford, 1951.
TURAN, P. On some recent results in the analytical theory of numbers. Proc. Symp. Pure Mathematics (1969 Number Theory Institute), vol. 20, 359–374. Amer. Math. Soc., Providence, R.I., 1971.
BATEMAN, P.T. The distribution of values of Euler function. Acta Arithm., 21, 1972, 329–345.
DESHOUILLERS, J.M. Nombres premiers de la forme [n c ]. C.R. Acad. Sci. Paris, Ser. A, 282, 1976, 131–133.
HUXLEY, M.N. On the difference between consecutive primes. Invent. Math., 15, 1972, 164–170.
HUXLEY, M.N. The Distribution of Prime Numbers. Oxford Univ. Press, Oxford, 1972.
ROTKIEWICZ, A. On a problem of W. Sierpiński. Elem. d. Math., 27, 1972, 83–85.
WALL, C.R. Density bounds for Euler’s function. Math. Comp., 26, 1972, 779–783.
APOSTOL, T.M. Another elementary proof of Euler’s formula for ζ(2n). Amer. Math. Monthly, 80, 1973, 425–431.
BRENT, R.P. The first occurrence of certain large prime gaps. Math. Comp., 35, 1980, 1435–1436.
CHEN, J.R. On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II. Sci. Sinica, 16, 1973, 157–176;
CHEN, J.R. On the representation of a large even integer as the sum of a prime and the product of at most two primes, I and II. Sci. Sinica, 21, 1978, 421–430.
HENSLEY, D. & RICHARDS, I. Primes in intervals. Acta Arithm., 25, 1973/4, 375–391.
MONTGOMERY, H.L. The pair correlation of zeros of the zeta function. Analytic Number Theory (Proc. Symp. Pure Math., Vol. XXIV, St. Louis, 1972), 181–193. Amer. Math. Soc., Providence, R.I., 1973.
WUNDERLICH, M.C. On the Gaussian primes on the line Im(x) = 1. Math. Comp., 27, 1973, 399–400.
AYOUB, R.G. Euler and the zeta function. Amer. Math. Monthly, 81, 1974, 1067–1086.
BRENT, R.P. The distribution of small gaps between successive primes. Math. Comp., 28, 1974, 315–324.
EDWARDS, H.M. Riemann’s Zeta Function. Academic Press, New York, 1974.
HALBERSTAM, H. & RICHERT, H.E. Sieve Methods. Academic Press, New York, 1974.
LEVINSON, N. More than one third of zeros of Riemann’s zeta function are on σ = 1/2. Adv. in Math., 13, 1984, 383–436.
MAKOWSKI, A. On a problem of Rotkiewicz on pseudo-primes. Elem. d. Math., 29, 1974, p. 13.
SHANKS, D. & WRENCH, J.W. Brun’s constant. Math. Comp., 28, 1974, 293–299.
BRENT, R.P. Irregularities in the distribution of primes and twin primes. Math. Comp., 29, 1975, 43–56.
MONTGOMERY, H.L. & VAUGHAN, R.C. The exceptional set in Goldbach’s problem. Acta Arithm., 27, 1975, 353–370.
RAM MURTY, P.M. On the Existence of “Euclidean Proofs” of Dirichlet’s Theorem on Primes in Arithmetic Progressions. B.Sc. Thesis, Carleton University, Ottawa, 1975, 39 pages.
ROSS, P.M. On Chen’s theorem that each large even number has the form p l + p 2 or p 1 + p 2 p 3. J. London Math. Soc., (2), 10, 1975, 500–506.
ROSSER, J.B. & Schoenfeld, L. Sharper bounds for Chebyshev functions 8(x) and ψx). Math. Comp., 29, 1975, 243–269.
SWIFT, J.D. Table of Carmichael numbers to 109. Math. Comp., 29, 1975, 338–339.
APOSTOL, T.M. Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.
BRENT, R.P. Tables concerning irregularities in the distribution of primes and twin primes to 1011. Math. Comp., 30, 1976, p. 379.
GERIG, S. A simple proof of the prime number theorem. J. Nb. Th., 8, 1976, 131–136.
NIVEN, I. & POWELL, B. Primes in certain arithmetic progressions. Amer. Math. Monthly, 83, 1976, 467–469.
SCHOENFELD, L. Sharper bounds for Chebyshev functions θ(x) and ψx), II. Math. Comp., 30, 1976, 337–360.
VAUGHAN, R.C. A note on Schnirelmann’s approach to Goldbach’s problem. Bull London Math. Soc., 8, 1976, 245–250.
DESHOUILLERS, J.M. Sur la constante de Schnirelmann. Sém. Delange-Pisot-Poitou, 17e année, 1975/6, fasc. 2, exp. No. G16, 6 p., Paris, 1977.
HUDSON, R.H. A formula for the exact number of primes below a given bound in any arithmetic progression. Bull. Austral. Math. Soc., 16, 1977, 67–73.
HUDSON, R.H. & BRAUER, A. On the exact number of primes in the arithmetic progressions 4n ± 1 and 6n ± 1. Journal f. d. reine u. angew. Math., 291, 1977, 23–29.
HUXLEY, M.N. Small differences between consecutive primes, II. Mathematika, 24, 1977, 142–152.
JUTILA, M. On Linnik’s constant. Math. Scand., 41, 1977, 45–62.
JUTILA, M. Zero-density estimates for L-functions. Acta Arithm., 32, 1977, 52–62.
KUMAR MURTY, V. The Least Prime in an Arithmetical Progression and an Estimate of Linnik’s Constant. B.Sc. Thesis, Carleton Univ., Ottawa, 1977, 45 pages.
LANGEVIN, M. Methodes elementaires en vue du théorèeme de Sylvester. Sém. Delange-Pisot-Poitou, 17e année, 1975/76, fasc. 1, exp. No. G12, 9 pages, Paris, 1977.
POWELL, B. Proof of a special case of Dirichlet’s theorem. Fibonacci Quart., 15, 1977, 167–169.
SMALL, C. Waring’s problem. Math. Mag., 50, 1977, 12–16.
WEINTRAUB, S. Seventeen primes in arithmetic progression. Math. Comp., 31, 1977, p. 1030.
ZAGIER, D. The first 50 million prime numbers. Math. Intelligencer, Vol. 1, 1977, 7–19. Reprinted in German in Lebendige Zahlen, by W. Borho, J.C. Jantzen, H. Kraft, J. Rohlfs, D. Zagier. Birkhäuser, Basel, 1981.
BAYS, C. & HUDSON, R.H. Details of the first region of integers x with π 3,2 (x) < π 3,1 (x). Math. Comp., 32, 1978, 571–576.
BAYS, C. & HUDSON, R.H. On the fluctuations of Littlewood for primes of the form 4n ± 1. Math. Comp., 32, 1941, 281–286.
ELLISON, W.J. & x, F. Théorie des Nombres. Abrégé d’Histoire des Mathématiques, Vol. I, Chapter V, §vi (edited by J. Dieudonné). Hermann, Paris, 1978.
HEATH-BROWN, D.R. Almost-primes in arithmetic progressions and short intervals. Math. Proc. Cambridge Phil. Soc., 83, 1978, 357–375.
IWANIEC, H. On the problem of Jacobsthal. Demo. Math., 11, 1978, 225–231.
WAGSTAFF, S.S.Jr., The least prime in arithmetic progression with prime difference. Journal f. d. reine u. angew. Math., 301, 1978, 114–115.
ATKIN, A.O.L. & RICKERT, N.W. On a larger pair of twin primes. Abstract 79T-A132, Notices Amer. Math. Soc., 26, 1979, A-373.
BALASUBRAMANIAN, R. On Waring’s problem: g(4)≤ 21. Hardy & Ramanujan J., 2, 1979, 31 pages.
BAYS, C. & HUDSON, R.H. Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 1012. Intern. J. Math. & Math. Sci., 2, 1979, 111–119.
CHEN, J.R. On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet’s L-functions, II. Sci. Sinica, 22, 1979, 859–889.
ELLIOTT, P.D.T.A. Probabilistic Number Theory (in 2 volumes). Springer-Verlag, New York, 1979.
GROSSWALD, E. & HAGIS, P.Jr., Arithmetic progressions consisting only of primes. Math. Comp., 33, 1979, 1343–1352.
HEATH-BROWN, D.R. & Iwaniec, H. On the difference between consecutive powers. Bull. Amer. Math. Soc., N.S., 1, 1979, 758–760.
HLAWKA, E. Theorie der Gleichverteilung. Bibliographisches Institut, Zürich, 1979.
IWANIEC, H. & JUTILA, M. Primes in short intervals. Arkiv f. Mat., 17, 1979, 167–176.
POMERANCE, C. The prime number graph. Math. Comp., 33, 1979, 399–408;.
ROTKIEWICZ, A. & WASEN, R. On a number-theoretical series. Publ. Math. Debrecen, 26, 1979, 1–4.
WAGSTAFF, S.S.Jr., Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp., 33, 1979, 1073–1080.
WOOLDRIDGE, K. Values taken many times by Euler’s phi-function. Proc. Amer. Math. Soc., 76, 1979, 229–234.
BRENT, R.P. The first occurrence of certain large prime gaps. Math. Comp., 35, 1980, 1435–1436.
CHEN, J.R. & PAN, C.D. The exceptional set of Goldbach numbers, I. Sci. Sinica, 23, 1980, 416–430.
ERDös, P. & STRAUS, E.G. Remarks on the difference between consecutive primes. Elem. d. Math., 35, 1980, 115–118.
IVIĆ, A. Exponent pairs and the zeta-function of Riemann. Studia Sci. Math. Hung., 15, 1980, 157–181.
KUTSUNA, M. On a criterion for the class number of a quadratic number field to be one. Nagoya Math. J., 79, 1980, 123–129.
LIGHT, W.A., FORREST, J., HAMMOND, N., & ROE, S. A note on Goldbach’s conjecture. BIT, 20, 1980, p. 525.
NEWMAN, D.J. Simple analytic proof of the prime number theorem. Amer. Math. Monthly, 87, 1980, 693–696.
PINTZ, J. On Legendre’s prime number formula. Amer. Math. Monthly, 87, 1980, 733–735.
POMERANCE, C. Popular values of Euler’s function. Mathematika, 27, 1980, 84–89.
POMERANCE, C. A note on the least prime in an arithmetic progression. J. Nb. Th., 12, 1980, 218–223.
POMERANCE, C., SELFRIDGE, J.L., & x, S.S.Jr., The pseudo primes to 25 • 109. Math. Comp., 35, 1980, 1003–1026.
POWELL, B. Problem E2844 (Difference between consecutive primes). Amer. Math. Monthly, 87, 1980, p. 577; 90, 1983, p. 286.
Vanden EYNDEN, C. Proofs that Σ 1/p diverges. C. Amer. Math. Monthly, 87, 1980, 394–397.
Van Der POORTEN, A.J. & ROTKIEWICZ, A. On strong pseudoprimes in arithmetic progressions. J. Austral. Math. Soc., A, 29, 1980, 316–321.
WAGSTAFF, S.S. Jr., Greatest of the least primes in arithmetic progressions having a given modulus. Math. Comp., 33, 1979, 1073–1080.
BOHMAN, J. & FRÆBERG, C.E. Numerical investigations of Waring’s problem for cubes. BIT 21, 1981, 118–122.
GRAHAM, S. On Linnik’s constant. Acta Arithm., 39, 1981, 163–179.
HEATH-BROWN, D.R. Three primes and an almost prime in arithmetic progression. J. London Math. Soc., (2), 23, 1981, 396–414.
LEAVITT, W.G. & MULLIN, A.A. Primes differing by a fixed integer. Math. Comp., 37, 1981, 581–585;.
LEHMER, D.H. On Fermat’s quotient, base two. Math. Comp., 36, 1981, 289–290.
MAIER, H. Chains of large gaps between consecutive primes. Adv. in Math., 39, 1981, 257–269.
PINTZ, J. On primes in short intervals, I. Studia Sci. Math. Hung., 16, 1981, 395–414.
POMERANCE, C. On the distribution of pseudo-primes. Math. Comp., 37, 1981, 587–593.
WEINTRAUB, S. A large prime gap. Math. Comp., 36, 1981, p. 279.
DIAMOND, H.G. Elementary methods in the study of the distribution of prime numbers. Bull. Amer. Math. Soc., 7, 1982, 553–589.
NAIR, M. On Chebyshev type inequalities for primes. Amer. Math. Monthly, 81, 1982, 126–129.
POMERANCE, C. A new lower bound for the pseudoprimes counting function. Illinois J. Math., 26, 1982, 4–9.
PRITCHARD, P.A. 18 primes in arithmetic progression. J. Recr. Math., 15, 1982/3, p. 288.
ROMANI, F. Computations concerning Waring’s problem for cubes. Calcolo, 19, 1982, 415–431.
THANIGASALAM, K. Some new estimates for G(k) in Waring’s problem. Acta Arithm., 42, 1982/3, 73–78.
WILLIAMS, H.C. A note on the Fibonacci quotient Fp-ε/p Can. Math. Bull., 25, 1982, 366–370.
CHEN, J.R. The exceptional value of Goldbach numbers, II. Sci. Sinica, Ser. A, 26, 1983, 714–731.
CONREY, J.B. Zeros of derivatives of Riemann’s xi-function on the critical line. J. Nb. Th., 16, 1983, 49–74.
FOUVRY, E. & IWANIEC, H. Primes in arithmetic progressions. Acta Arithm., 42, 1983, 197–218.
IVIć, A. Topics in Recent Zeta Function Theory. Publ. Math. d’Orsay, Univ. Paris-Sud. 1983.
KELLER, W. Large twin prime pairs related to Mersenne numbers. Abstracts Amer. Math. Soc., 4, 1983, p. 490.
NICOLAS, J.L. Petites valeurs de la fonction d’Euler. J. Nb. Th., 17, 1983, 375–388.
NICOLAS, J.L. Distribution de valeurs de la fonction d’Euler. In Algorithmique, Calcul Formel Arithmétique, exposé 24, 7 pages. Univ. Saint-Etienne, 1983. Reprinted in L’enseign. Math. 30, 1984, 331–338.
POWELL, B. Problem 6429 (Difference between consecutive primes). Amer. Math. Monthly, 90, 1983, p. 338.
RIESEL, H. & VAUGHAN, R.C. On sums of primes. Arkiv f. Mat., 21, 1983, 45–74.
ROBIN, G. Estimation de la fonction de Tschebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n), nombre de diviseurs premiers de n. Acta Arithm., 42, 1983, 367–389.
BALASUBRAMANIAN, R. & MOZZOCHI, C.J. An improved upper bound for G(k) in Waring’s problem for relatively small k. Acta Arithm., 63, 1984, 283–285.
DABOUSSI, H. Sur le theoreme des nombres premiers. C.R. Acad. Sci. Paris, Ser. I, 298, 1984, 161–164.
DAVIES, R.O. Solution of problem 6429. Amer. Math. Monthly, 91, 1984, p. 64.
GUPTA, R. & RAM MURTY, P.M. A remark on Artin’s conjecture. Invent. Math., 78, 1984, 127–130.
IWANIEC, H. & PINTZ, J. Primes in short intervals. Monatsh. Math., 98, 1984, 115–143.
PINTZ, J. On primes in short intervals, II. Stud. Sci. Math. Hung., 19, 1984, 89–96.
POWELL, B. & SHAFER, R.E. Solution of problem E 2844. Amer. Math. Monthly, 91, 1984, 310–311.
SCHROEDER, M.R. Number Theory in Science and Communication. Springer-Verlag, New York, 1984.
WANG, Y. Goldbach Conjecture. World Scientific Publ., Singapore, 1984.
BALASUBRAMANIAN, R., CONREY, J.B., & HEATH-BROWN, D.R. Asymptotic mean square of the product of the Riemann zeta- function and a Dirichlet polynomial. Journal f. d. reine u. angew. Math., 357, 1985, 161–181.
FOUVRY, E. Theoreme de Brun-Titchmarsh, application au théorème de Fermat. Invent. Math., 79, 1985, 383–407.
HUDSON, R.H. Averaging effect on irregularities in the distribution of primes in arithmetic progressions. Math. Comp., 44, 1985, 561–571.
IVIĆ, A. The Riemann Zeta-Function. J. Wiley &; Sons, New York, 1985.
LAGARIAS, J.C., MILLER, V.S. & u, A.M. Computing π(x) The Meissel-Lehmer method. Math. Comp., 44, 1985, 537–560.
MAIER, H. Small differences between prime numbers. Michigan Math. J., 32, 1985, 221–225.
ODLYZKO, A.M. & Te RIELE, H.J.J. Disproof of the Mertens conjecture. Journal f. d. reine u. angew. Math., 357, 1985, 138–160.
PINTZ, J. An effective disproof of the Mertens conjecture. Preprint No. 55/1985, 9 pages. Math. Inst. Hungarian Acad. Sci., Budapest.
POWELL, B. Problem 1207 (A generalized weakened Goldbach theorem). Math. Mag., 58, 1985, p. 46; 59, 1986, 48–49.
PRITCHARD, P.A. Long arithmetic progressions of primes; some old, some new. Math. Comp., 45, 1985, 263–267.
THANIGASALAM, K. Improvement on Davenport’s iterative method and new results in additive number theory, I and II (Proof that G(5) ≤ 22). Acta Arithm., 46, 1985, 1–31 and 91–112.
BALASUBRAMANIAN, R., DESHOUILLERS, J.M. & DRESS, F. PROBLème de Waring pour les bicarrés, 2: résultats auxiliaires pour le theóreme asymptotique. C.R. Acad. Sci. Paris, Ser I, 303, 1986, 161–163.
BOMBIERI, E., FRIEDLANDER, J.B. & IWANIEC, H. Primes in arithmetic progression to large moduli, I. Acta Math., 156, 1986, 203–251.
COSTA PEREIRA, N. Sharp elementary estimates for the sequence of primes. Port. Math., 43, 1986, 399–406.
FINN, M.V. & FROHLIGER, J.A. Solution of problem 1207. Math. Mag., 59, 1986, 48–49.
MOZZOCHI, C.J. On the difference between consecutive primes. J. Nb. Th., 24, 1986, 181–187.
PINTZ, J. A note on the exceptional set in Goldbach’s problem. Math. Institute Hungarian Acad. Sci., Preprint No. 14/1986.
TE RIELE, H.J.J. On the sign of the difference π(x) - e(x). Report NM-R8609, Centre for Math. and Comp. Science, Amsterdam, 1986; Math. Comp., 48, 1987, 323–328.
VAN DE LUNE, J., TE RIELE, H.J.J., & WINTER, D.T. On the zeros of the Riemann zeta function in the critical strip, IV. Math. Comp., 47, 1986, 667–681.
VAUGHAN, R.C. On Waring’s problem for small exponents. Proc. London Math. Soc., 52, 1986, 445–463.
VAUGHAN, R.C. On Waring’s problem for sixth powers. J. London Math. Soc., (2), 33, 1986, 227–236.
WAGON, S. Where are the zeros of zeta of s? Math. Intelligencer 8, No. 4, 1986, 57–62.
BOMBIERI, E., FRIEDLANDER, J.B. & IWANIEC, H. Primes in arithmetic progressions to large moduli, II. Math. Ann. 277, 1987, 361–393.
BOMBIERI, E., Iwaniec, H. On the order of ζ(1/2 + it). Ann. Scuola Norm. Sup. Pisa (to appear).
ODLYZKO, A.M. On the distribution of spacings between zeros of the zeta function. Math. Comp., 48, 1987, 273–308.
THANIGASALAM, K. Improvement on Davenport’s iterative method and new results in additive number theory, III. Acta Arithm., 48, 1987, 97–116.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1988 Springer-Verlag New York Inc.
About this chapter
Cite this chapter
Ribenboim, P. (1988). How are the Prime Numbers Distributed?. In: The Book of Prime Number Records. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9938-4_5
Download citation
DOI: https://doi.org/10.1007/978-1-4684-9938-4_5
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4684-9940-7
Online ISBN: 978-1-4684-9938-4
eBook Packages: Springer Book Archive