Advertisement

How to Recognize Whether a Natural Number is a Prime?

  • Paulo Ribenboim

Abstract

In the art. 329 of Disquisitiones Arithmeticae, Gauss (1801) wrote:

The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous to discuss the problem at length... . Further, the dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated.

Keywords

Prime Number Fibonacci Number Primality Test Fermat Number Legendre Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1801.
    GAUSS, C.F. Disquisitiones Arithmeticae. G. Fleischer, Leipzig, 1801. English translation by A.A. Clarke. Yale Univ. Press, New Haven, 1966. Revised English translation by W.C. Waterhouse. Springer-Verlag, New York, 1986.Google Scholar
  2. 1844.
    EISENSTEIN, F.G. Aufgaben. Journal f.d. reine u. angew. Math., 27, 1844, p. 87. Reprinted in Mathematische Werke, Vol. I, p. 112. Chelsea, Bronx, N.Y., 1975.Google Scholar
  3. 1852.
    KUMMER, E.E. Uber die Erganzungssätze zu den allgemeinem Reciprocitätsgesetzen. Journal f.d. reine u. angew. Math., 44, 1852, 93–146. Reprinted in Collected Papers, Vol. I, (edited by A. Weil, 485–538). Springer-Verlag, New York, 1975.MATHGoogle Scholar
  4. 1876.
    LUCAS, E. Sur la recherche des grands nombres premiers. Assoc. Française p. l’Avanc. des Sciences, 5, 1876, 61–68.Google Scholar
  5. 1877.
    PEPIN, T. Sur la formule 22n + 1. C.R. Acad. Sci. Paris, 85, 1877, 329–331.Google Scholar
  6. 1878.
    LUCAS, E. Théorie des fonctions numériques simplement périodiques. Amer. J. Math., 1, 1878, 184–240 and 289–321.MathSciNetGoogle Scholar
  7. 1878.
    PROTH, F. Théorèmes sur les nombres premiers. C.R. Acad. Sci. Paris, 85, 1877, 329–331.Google Scholar
  8. 1886.
    BANG, A.S. Taltheoretiske Undersøgelser. Tidskrift f. Math., ser. 5, 4, 1886, 70–80 and 130–137.Google Scholar
  9. 1891.
    LUCAS, E. Théorie des Nombres. Gauthier-Villars, Paris, 1891. Reprinted by A. Blanchard, Paris, 1961.MATHGoogle Scholar
  10. 1892.
    ZSIGMONDY, K. Zur Theorie der Potenzreste. Monatsh. f. Math., 3, 1892, 265–284.MathSciNetMATHGoogle Scholar
  11. 1903.
    MALO, E. Nombres qui, sans être premiers, vérifient exceptionnellement une congruence de Fermat. L’Interm. des Math., 10, 1903, p. 88.Google Scholar
  12. 1904.
    BIRKHOFF, G.D. & VANDIVER, H.S. On the integral divisors of an — b n. Annals of Math., (2), 5, 1904, 173–180.MathSciNetGoogle Scholar
  13. 1904.
    CIPOLLA, M. Sui numeri composti P, che verificano la congruenza di Fermat aP-1 - 1 (mod P). Annali di Matematica, (3), 9, 1904, 139–160.Google Scholar
  14. 1912.
    CARMICHAEL, R.D. On composite numbers P which satisfy the Fermat congruence a13–1 = 1 (mod P). Amer. Math. Monthly, 19, 1912, 22–27.MathSciNetGoogle Scholar
  15. 1913.
    CARMICHAEL, R.D. On the numerical factors of the arithmetic forms ∝n ± ßn. Annals of Math., 15, 1913, 30–70.MATHGoogle Scholar
  16. 1913.
    DICKSON, L.E. Finiteness of odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math., 35, 1913, 413–422. Reprinted in The Collected Mathematical Papers (edited by A.A. Albert), Vol. I, 349–358. Chelsea, Bronx, N.Y., 1975.MathSciNetMATHGoogle Scholar
  17. 1914.
    POCKLINGTON, H.C. The determination of the prime or composite nature of large numbers by Fermat’s theorem. Proc. Cambridge Phil. Soc., 18, 1914/6, 29–30.Google Scholar
  18. 1921.
    PIRANDELLO, L. Fu Mattia Pascal. Bemporad & Figlio, Firenze, 1921.Google Scholar
  19. 1922.
    CARMICHAEL, R. D. Note on Euler’s Φ-function. Bull. Amer. Math. Soc., 28, 1922, 109–110.MathSciNetMATHGoogle Scholar
  20. 1925.
    CUNNINGHAM, A.J.C. & Woodall, H.J. Factorization of y n ± 1, y = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers (n). Hodgson, London, 1925.MATHGoogle Scholar
  21. 1929.
    PILLAI, S.S. On some functions connected with IΦ(n)• Bull. Amer. Math. Soc., 35, 1929, 832–836.MathSciNetMATHGoogle Scholar
  22. 1930.
    LEHMER, D. H. An extended theory of Lucas’ functions. Annals of Math., 31, 1930, 419–448. Reprinted in Selected Papers (edited by D. McCarthy), Vol. I, 11–48. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.MathSciNetMATHGoogle Scholar
  23. 1932.
    LEHMER, D.H. On Euler’s totient function. Bull. Amer. Math. Soc., 38, 1932, 745–757. Reprinted in Selected Papers (edited by D. McCarthy), Vol. I, 319–325. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.MathSciNetGoogle Scholar
  24. 1932.
    WESTERN, A.E. On Lucas’ and Pepin’s tests for the primeness of Mersenne’s numbers. J. London Math. Soc., 7, 1932, 130–137.MathSciNetGoogle Scholar
  25. 1935.
    ARCHIBALD, R.C. Mersenne’s numbers. Scripta Math., 3, 1935, 112–119.Google Scholar
  26. 1935.
    ERDOS, P. On the normal number of prime factors of p —1 and some related problems concerning Euler’s Φ-function. Quart. J. Math. Oxford, 6, 1935, 205–213.Google Scholar
  27. 1935.
    LEHMER, D.H. On Lucas’ test for the primality of Mersenne numbers. J. London Math. Soc., 10, 1935, 162–165. Reprinted in Selected Papers (edited by D. McCarthy), Vol. I, 86–89. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.MathSciNetGoogle Scholar
  28. 1936.
    LEHMER, D.H. On the converse of Fermat’s theorem. Amer. Math. Monthly, 43, 1936, Reprinted in Selected Papers (edited by D. McCarthy), Vol. I, 90–95. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.Google Scholar
  29. 1939.
    CHERNICK, J. On Fermat’s simple theorem. Bull. Amer. Math. Soc., 45, 1939, 269–274.MathSciNetGoogle Scholar
  30. 1941.
    KANOLD, H.J. Unterschungen über ungerade volkommene Zahlen. Journal f. d. reine u. angew. Math., 183, 1941, 98–109.MathSciNetGoogle Scholar
  31. 1942.
    KANOLD, H.J. Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl. Journal f. d. reine u. angew. Math., 184, 1942, 116–123.MathSciNetGoogle Scholar
  32. 1943.
    BRAUER, A. On the non-existence of odd perfect numbers of the form (math). Bull. Amer. Math. Soc., 49, 1943, 712–718, and page 937.MathSciNetMATHGoogle Scholar
  33. 1944.
    KANOLD, H. J. Folgerungen aus dem Vorkommen einer Gauss’ schen Primzahl in der Primfaktorenzerlegung einer ungeraden vollkommenen Zahl. Journal f. d. reine u. angew. Math., 186, 1944, 25–29.MathSciNetMATHGoogle Scholar
  34. 1944.
    PILLAI, S.S. On the smallest primitive root of a prime. J. Indian Math. Soc., (N.S.), 8, 1944, 14–17.MathSciNetMATHGoogle Scholar
  35. 1944.
    SCHUH, F. Can n —1 be divisible by 0(n) when n is composite? (in Dutch). Mathematica, Zutphen, B, 12, 1944, 102–107.MathSciNetGoogle Scholar
  36. 1945.
    KAPLANSKY, I. Lucas’ tests for Mersenne numbers. Amer. Math. Monthly, 52, 1945, 188–190.MathSciNetMATHGoogle Scholar
  37. 1947.
    KLEE, V.L. On a conjecture of Carmichael. Bull. Amer. Math. Soc., 53, 1947, 1183–1186.MathSciNetMATHGoogle Scholar
  38. 1947.
    LEHMER, D.H. On the factors of 2n ±l. Bull. Amer. Math. Soc., 53, 1947, 164–167. Reprinted in Selected Papers (edited by D. McCarthy), Vol. III, 1081–1084. Ch. Baggage Res. Centre, St. Pierre, Manitoba, Canada, 1981.MathSciNetMATHGoogle Scholar
  39. 1950.
    BEEGER, N.G.W.H. On composite numbers nfor which an-1 n ≡ 1 (mod n), for every a, prime to n. Scripta Math., 16, 1950, 133–135.MathSciNetMATHGoogle Scholar
  40. 1950.
    GIUGA, G. Su una presumibile proprietâ caratteristica dei numeri primi. Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat., (3), 14 (83), 1950, 511–528.Google Scholar
  41. 1950.
    GUPTA, H. On a problem of Erdös. Amer. Math. Monthly, 57, 1950, 326–329.MathSciNetMATHGoogle Scholar
  42. 1950.
    KANOLD, H.J. Sätze über Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretische Probleme, II. Journal f.d. reine u. angew. Math., 187, 1950, 355–366.MathSciNetGoogle Scholar
  43. 1950.
    SALI É H. Uber den kleinsten positiven quadratischen Nichtrest einer Primzahl. Math. Nachr., 3, 1949, 7–8.MathSciNetGoogle Scholar
  44. 1950.
    SOMAYAJULU, B.S.K.R. On Euler’s totient function Φ(n)• Math. Student, 18, 1950, 31–32.MathSciNetGoogle Scholar
  45. 1951.
    BEEGER, N.G.W.H. On even numbers m dividing 2m — 2. Amer. Math. Monthly, 58, 1951, 553–555.MathSciNetMATHGoogle Scholar
  46. 1951.
    MORROW, D.C. Some properties of D numbers. Amer. Math. Monthly, 58, 1951, 329–330.MathSciNetMATHGoogle Scholar
  47. WEBBER, G.C. Nonexistence of odd perfect numbers of the form Duke Math. J., 18, 1951, 741–749.MathSciNetMATHGoogle Scholar
  48. 1952.
    DUPARC, H.J.A. On Carmichael numbers. Simon Stevin, 29, 1952, 21–24.MathSciNetMATHGoogle Scholar
  49. 1952.
    GRüN, O. Über ungerade vollkommene Zahlen. Math. Zeits., 55, 1952, 353–354.MATHGoogle Scholar
  50. 1953.
    KANOLD, H.J. Einige neuere Bedingungen für die Existenz ungerader vollkommener Zahlen. Journal f. d. reine u. angew. Math., 192, 1953, 24–34.MathSciNetMATHGoogle Scholar
  51. 1953.
    KNÖDEL, W. Carmichaelsche Zahlen. Math. Nachr., 9, 1953, 343–350.MathSciNetMATHGoogle Scholar
  52. 1953.
    TOUCHARD, J. On prime numbers and perfect numbers. Scripta Math., 19, 1953, 35–39.MathSciNetMATHGoogle Scholar
  53. 1954.
    KANOLD, H.J. Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen. Math. Zeits., 61, 1954, 180–185.MathSciNetMATHGoogle Scholar
  54. 1954.
    ROBINSON, R.M. Mersenne and Fermat numbers. Proc. Amer. Math. Soc, 5 1954,842–846.MathSciNetMATHGoogle Scholar
  55. 1954.
    SCHINZEL, A. Quelques théorèmes sur les fonctions ϕ(n) et σ(n). Bull. Acad. Polon. Sci., Cl. III, 2, 1954, 467–469.MathSciNetGoogle Scholar
  56. 1954.
    SCHINZEL, A. Generalization of a theorem of B.S.K.R. Somayajulu on the Euler’s function ϕ(n). Ganita, 5, 1954, 123–128.MathSciNetMATHGoogle Scholar
  57. 1954.
    SCHINZEL, A. & Sierpiński, W. Sur quelques propriétés des fonctions ϕ(n) et σ(n). Bull. Acad. Polon. Sci., Cl. III, 2, 1954, 463–466.Google Scholar
  58. 1955.
    ARTIN, E. The orders of the linear groups. Comm. Pure & Appl. Math., 8, 1955, 355–365.MathSciNetMATHGoogle Scholar
  59. 1955.
    ARTIN, E. The orders of the linear groups. Reprinted in Collected Papers(edited by S. Lang & J.T. Tate), 387–397. Addison-Wesley, Reading, Mass., 1965.Google Scholar
  60. 1955.
    HORNFECK, B. Zur Dichte der Menge der vollkommenen Zahlen. Arch. Math., 6, 1955, 442–443.MathSciNetMATHGoogle Scholar
  61. 1955.
    LABORDE, P. A note on the even perfect numbers. Amer. Math. Monthly, 62, 1955, 348–349.MathSciNetMATHGoogle Scholar
  62. 1955.
    WARD, M. The intrinsic divisors of Lehmer numbers. Annals of Math., (2), 62, 1955, 230–236.MATHGoogle Scholar
  63. 1956.
    HORNFECK, B. Bemerkung zu meiner Note über vollkommene Zahlen. Arch. Math., 7, 1956, p. 273.MATHGoogle Scholar
  64. 1956.
    KANOLD, H.J. Über einen Satz von L.E. Dickson, II. Math. Ann., 132, 1956, 246–255.MathSciNetGoogle Scholar
  65. 1956.
    ORE, O. Number Theory and its History. McGraw-Hill, New York, 2nd edition, 1956.Google Scholar
  66. 1956.
    SCHINZEL, A. Sur l’équation ϕ(x) = m. Eiern. Math., 11, 1956, 75–78.MathSciNetMATHGoogle Scholar
  67. 1956.
    SCHINZEL, A. Sur un problème concernant la fonction ϕ(n). Czechoslovak Math. J., 6, (81), 1956, 164–165.MathSciNetGoogle Scholar
  68. 1956.
    SIERPIńSKI, W. Sur une propriété de la fonction ϕ(n). Publ. Math. Debrecen, 4, 1956, 184–185.MathSciNetGoogle Scholar
  69. 1957.
    HORNFECK, B & WIRSING, E. Über die Haufigkeit vollkommener Zahlen. Math. Ann., 133, 1957, 431–438.MathSciNetMATHGoogle Scholar
  70. 1957.
    KANOLD, H.J. Über die Verteilung der vollkommenen Zahlen und allgemeinerer Zahlenmengen. Math. Ann., 132, 1957, 442–450.MathSciNetMATHGoogle Scholar
  71. 1957.
    KANOLD, H.J. Über mehrfach vollkommene Zahlen, II. Journal f. d. reine u. angew. Math., 197, 1957, 82–96.MathSciNetMATHGoogle Scholar
  72. 1957.
    MCCARTHY, P.J. Odd perfect numbers. Scripta Math., 23, 1957, 43–47.MathSciNetGoogle Scholar
  73. 1957.
    ROBINSON, R.M. The converse of Fermat’s theorem. Amer. Math. Monthly, 64, 1957, 703–710.MathSciNetMATHGoogle Scholar
  74. 1958.
    ERDÖS, P. Some remarks on Euler’s ϕ-function. Acta Arithm., 4, 1958, 10–19.MATHGoogle Scholar
  75. 1958.
    JARDEN, D. Recurring Sequences. Riveon Lematematika, Jerusalem, 1958 (3rd edition, 1973).Google Scholar
  76. 1958.
    PERISASTRI, M. A note on odd perfect numbers. Math. Student, 26, 1958, 179–181.MathSciNetGoogle Scholar
  77. 1958.
    ROBINSON, R.M. A report on primes of the form k • 2n + 1 and on factors of Fermat numbers. Proc. Amer. Math. Soc, 9, 1958, 673–681.MathSciNetMATHGoogle Scholar
  78. 1958.
    SCHINZEL, A. Sur l’équation ϕ(x + k) = ϕ(x). Acta Arithm., 4, 1958, 181–184.MathSciNetMATHGoogle Scholar
  79. 1958.
    SIERPIńSKI, W. Sur les nombres premiers de la forme n n + 1. L’Enseign. Math., (2), 4, 1958, 211–212.MATHGoogle Scholar
  80. 1959.
    DURST, L.K. Exceptional real Lehmer sequences. Pacific J. Math., 9, 1959, 437–441.MathSciNetMATHGoogle Scholar
  81. 1959.
    ROTKIEWICZ, A. Sur les nombres composes qui divisent an-1 - bn-1. Rend. Circ. Mat. Palermo, (2), 8, 1959, 115–116.MathSciNetMATHGoogle Scholar
  82. 1959.
    ROTKIEWICZ, A. Sur les nombres pairs a pour lesquels les nombres a n b -ab n, respectivement an-1-bn-1 divisibles par n. Rend. Cire. Mat. Palermo, (2), 8, 1959, 341–342.MathSciNetGoogle Scholar
  83. 1959.
    SATYANARAYANA, M. Odd perfect numbers Math. Student, 27, 1959, 17–18.MathSciNetGoogle Scholar
  84. 1959.
    SCHINZEL, A. Sur les nombres composes n qui divisent a n - a. Rend. Circ. Mat. Palermo, (2), 7, 1958, 1–5.MathSciNetGoogle Scholar
  85. 1959.
    SCHINZEL, A. & WAKULICZ, A. Sur l’équation ϕ(x+k) = ϕ(x), II. Acta Arithm., 5, 1959, 425–426.MathSciNetMATHGoogle Scholar
  86. 1959.
    WARD, M. Tests for primality based on Sylvester’s cyclotomic numbers. Pacific J. Math., 9, 1959, 1269–1272.MathSciNetMATHGoogle Scholar
  87. 1959.
    WIRSING, E. Bemerkung zu der Arbeit über vollkommene Zahlen. Math. Ann., 137, 1959, 316–318.MathSciNetMATHGoogle Scholar
  88. 1960.
    INKERI, K. Tests for primality. Annales Acad. Sci. Fennicae, Ser. A, I, 279, Helsinki, 1960, 19 pages.Google Scholar
  89. 1961.
    ERDÖS, P. Remarks in number theory, I (in Hungarian, with English summary). Mat. Lapok, 12, 1961, 10–17.MathSciNetGoogle Scholar
  90. 1961.
    NORTON, K.K. Remarks on the number of factors of an odd perfect number. Acta Arithm., 6, 1961, 365–374.MathSciNetMATHGoogle Scholar
  91. 1961.
    WARD, M. The prime divisors of Fibonacci numbers. Pacific J. Math., 11, 1961, 379–389.MathSciNetMATHGoogle Scholar
  92. 1962.
    BURGESS, D.A. On character sums and L-series. Proc. London Math. Soc, (3), 12 1962, 193–206.MathSciNetMATHGoogle Scholar
  93. 1962.
    CROCKER, R. A theorem on pseudo-primes. Amer. Math. Monthly, 69, 1962, p. 540.MathSciNetMATHGoogle Scholar
  94. 1962.
    MAKOWSKI, A. Generalization of Morrow’s D numbers. Simon Stevin, 36, 1962, p. 71.MathSciNetMATHGoogle Scholar
  95. 1962.
    SCHINZEL, A. The intrinsic divisors of Lehmer numbers in the case of negative discriminant. Arkiv. for Mat, 4, 1962, 413–416.MathSciNetMATHGoogle Scholar
  96. 1962.
    SCHINZEL, A. On primitive prime factors of a n -b n . Proc. Cambridge Phil. Soc, 58, 1962, 555–562.MathSciNetMATHGoogle Scholar
  97. 1962.
    SHANKS, D. Solved and Unsolved Problems in Number Theory. Spartan, Washington, 1962. 3rd edition by Chelsea, Bronx, N.Y., 1985.Google Scholar
  98. 1963.
    SCHINZEL, A. On primitive prime factors of Lehmer numbers, I. Acta Arithm., 8, 1963, 211–223.Google Scholar
  99. 1963.
    SCHINZEL, A. On primitive prime factors of Lehmer numbers, II. Acta Arithm., 8, 1963, 251–257.MathSciNetGoogle Scholar
  100. 1963.
    SURYANARAYANA, D. On odd perfect numbers, II. Proc. Amer. Math., 14, 1963, 896–904.MathSciNetMATHGoogle Scholar
  101. LEHMER, E. On the infinitude of Fibonacci pseudo-primes. Fibonacci Quart., 2, 1964, 229–230.MATHGoogle Scholar
  102. 1965.
    ERDÖS, P. Some recent advances and current problems in number theory, in Lectures in Modern Mathematics, Vol. III (edited by T.L. Saaty), 196–244. Wiley, New York, 1965.Google Scholar
  103. 1965.
    ROTKIEWICZ, A. Sur les nombres de Mersenne dépourvus de facteurs carrés et sur les nombres naturels n tels que n 2∣ 2n-2. Matem. Vesnik (Beograd), 2, (17), 1965, 78–80.MathSciNetGoogle Scholar
  104. 1966.
    GROSSWALD, E. Topics from the Theory of Numbers. Macmillan, New York, 1966; 2nd edition Birkhäuser, Boston, 1984.MATHGoogle Scholar
  105. 1966.
    MUSKAT, J.B. On divisors of odd perfect numbers. Math. Comp., 20, 1966, 141–144.MathSciNetMATHGoogle Scholar
  106. 1967.
    MOZZOCHI, C.J. A simple proof of the Chinese remainder theorem. Amer. Math. Monthly, 74, 1967, p. 998.MathSciNetMATHGoogle Scholar
  107. 1967.
    TUCKERMAN, B. Odd perfect numbers: A search procedure, and a new lower bound of 1036. IBM Res. Rep., RC-1925, 1967, and Notices Amer. Math. Soc., 15, 1968, p. 226.Google Scholar
  108. 1968.
    SCHINZEL, A. On primitive prime factors of Lehmer numbers, III. Acta Arithm., 15, 1968, 49–69.MathSciNetMATHGoogle Scholar
  109. 1969.
    LEHMER, D.H. Computer technology applied to the theory of numbers. In Studies in Number Theory (edited by W.J. Le Veque), 117–151. Math. Assoc. of America, Washington, 1969.Google Scholar
  110. 1970.
    ELLIOTT, P.D.T.A. On the mean value of f(p). Proc. London Math. Soc., (3), 21, 1970, 28–96.MathSciNetMATHGoogle Scholar
  111. 1970.
    LIEUWENS, E. Do there exist composite numbers for which kΦ(M) = M-1 holds? Nieuw. Arch. Wisk., (3), 18, 1970, 165–169.MathSciNetMATHGoogle Scholar
  112. 1970.
    PARBERRY, E.A. On primes and pseudo-primes related to the Fibonacci sequence. Fibonacci Quart., 8, 1970, 49–60.MathSciNetMATHGoogle Scholar
  113. 1970.
    SURYANARAYANA, D. & HAGIS Jr. P. A theorem concerning odd perfect numbers. Fibonnaci Quart., 8, 1970, 337–346 and 374.MathSciNetGoogle Scholar
  114. 1971.
    LIEUWENS, E. Fermat Pseudo-Primes. Ph.D. Thesis, Delft, 1971.Google Scholar
  115. 1971.
    MORRISON, M.A. & BRILLHART, J. The factorization of F 7 Bull. Amer. Math. Soc., 77, 1971, page 264.MathSciNetMATHGoogle Scholar
  116. 1972.
    HAGIS Jr., P. & MCDANIEL, W.L. A new result concerning the structure of odd perfect numbers. Proc. Amer. Math. Soc., 32, 1972, 13–15.MathSciNetMATHGoogle Scholar
  117. 1972.
    MANN, H.B. & SHANKS, D. A necessary and sufficient condition for primality and its source. J. Comb. Th., ser. A, 13, 1972, 131–134.MathSciNetMATHGoogle Scholar
  118. 1972.
    MILLS, W.H. On a conjecture of Ore. Proc. 1972 Number Th. Conf. in Boulder, p. 142–146.Google Scholar
  119. 1972.
    RIBENBOIM, P. Algebraic Numbers. Wiley-Interscience, New York, 1972.MATHGoogle Scholar
  120. 1972.
    ROBBINS, N. The nonexistence of odd perfect numbers with less than seven distinct prime factors. Notices Amer. Math. Soc., 19, 1972, page A52.Google Scholar
  121. 1972.
    ROTKIEWICZ, A. Pseudoprime Numbers and their Generalizations. Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972.MATHGoogle Scholar
  122. 1972.
    ROTKIEWICZ, A. Un problème sur les nombres pseudopremiers. Indag. Math., 34, 1972, 86–91.MathSciNetGoogle Scholar
  123. 1972.
    WILLIAMS, H.C. The primality of N = 2A3n-1. Can. Math. Bull., (4), 15, 1972, 585–589.MATHGoogle Scholar
  124. 1973.
    HAGIS Jr., P. A lower bound for the set of odd perfect numbers. Math. Comp., 27, 1973, 951–953.MathSciNetMATHGoogle Scholar
  125. 1973.
    HONSBERGER, R. Mathematical Gems, I. Math. Assoc. of America, Washington, 1973.Google Scholar
  126. 1973.
    ROTKIEWICZ, A. On pseudoprimes with respect to the Lucas sequences. Bull. Acad. Polon. Sci., 21, 1973, 793–797.MathSciNetMATHGoogle Scholar
  127. 1974.
    LIGH, S. & NEAL, L. A note on Mersenne numbers. Math. Mag., 47, 1974, 231–233.MathSciNetMATHGoogle Scholar
  128. 1974.
    POMERANCE, C. On Carmichael’s conjecture. Proc. Amer. Math. Soc., 43, 1974, 297–298.MathSciNetMATHGoogle Scholar
  129. 1974.
    SCHINZEL, A. Primitive divisors of the expression A nB n in algebraic number fields. Journal f. d. reine u. angew. Math., 268/269, 1974, 27–33.MathSciNetGoogle Scholar
  130. 1974.
    SINHA, T.N. Note on perfect numbers. Math. Student, 42, 1974, p. 336.MathSciNetGoogle Scholar
  131. 1975.
    BRILLHART, J., LEHMER, D.H. & SELFRIDGE, J.L. New primality criteria and factorizations of 2m ± 1. Math. Comp., 29, 1975, 620–647.MathSciNetMATHGoogle Scholar
  132. 1975.
    GUY, R.K. How to factor a number. Proc. Fifth Manitoba Conf. Numerical Math., 1975, 49–89 (Congressus Numerantium, XVI, Winnipeg, Manitoba, 1976).Google Scholar
  133. 1975.
    HAGIS Jr., P. & MCDANIEL, W.L. On the largest prime divisor of an odd perfect number, II. Math. Comp., 29, 1975, 922–924.MathSciNetMATHGoogle Scholar
  134. 1975.
    MORRISON, M.A. A note on primality testing using Lucas sequences. Math. Comp., 29, 1975, 181–182.MathSciNetMATHGoogle Scholar
  135. 1975.
    MORRISON, M.A. & BRILLHART, J. A method of factoring and the factorization of F 7. Math. Comp., 29, 1975, 183–208.MathSciNetMATHGoogle Scholar
  136. 1975.
    POMERANCE, C. The second largest prime factor of an odd perfect number. Math. Comp., 29, 1975, 914–921.MathSciNetMATHGoogle Scholar
  137. 1975.
    PRATT, V.R. Every prime has a succinct certificate. Siam J. Comput., 4, 1975, 214–220.MathSciNetMATHGoogle Scholar
  138. 1975.
    STEWART, C.L. The greatest prime factor of a n - b n. Acta Arithm., 26, 1975, 427–433.MATHGoogle Scholar
  139. 1976.
    BUXTON, M. & ELMORE, S. An extension of lower bounds for odd perfect numbers. Notices Amer. Math. Soc., 23, 1976, page A55.Google Scholar
  140. 1976.
    DIFFIE, W. & HELLMAN, M.E. New directions in cryptography. IEEE Trans. on Inf. Th., IT-22Google Scholar
  141. 1976.
    ERDOS, P. & SHOREY, T.N. On the greatest prime factor of 2p-1 for a prime p, and other expressions. Acta Arithm., 30, 1976, 257–265.MathSciNetGoogle Scholar
  142. 1976.
    LEHMER, D.H. Strong Carmichael numbers. J. Austral. Math. Soc., A, 21, 1976, 508–510. Reprinted in Selected Papers (edited by D. McCarthy), Vol. I, 140–142. Ch. Babbage Res. Centre, St. Pierre, Manitoba, Canada, 1981.MathSciNetMATHGoogle Scholar
  143. 1976.
    MENDELSOHN, N.S. The equation Φ(x) = k. Math. Mag., 49, 1976, 37–39.MathSciNetMATHGoogle Scholar
  144. 1976.
    MILLER, G.L. Riemann’s hypothesis and tests for primality. J. Comp. Syst. Sci., 13, 1976, 300–317.MATHGoogle Scholar
  145. 1976.
    RABIN, M.O. Probabilistic algorithms. In Algorithms and Complexity (edited by J.F. Traub), 21–39. Academic Press, New York, 1976.Google Scholar
  146. 1976.
    RECAMAN SANTOS, B. Twelve and its totatives. Math. Mag., 49, 1970, 239–240.Google Scholar
  147. 1976.
    TRAUB, J.F. (editor) Algorithms and Complexity. Academic Press, New York, 1976.MATHGoogle Scholar
  148. 1976.
    YORINAGA, M. On a congruential property of Fibonacci numbers. Numerical experiments. Considerations and Remarks. Math. J. Okayama Univ., 19, 1976, 5–10; 11–17.MathSciNetMATHGoogle Scholar
  149. AIGNER, A. Das quadratfreie Kern der Eulerschen Φ-Funktion. Monatsh. Math., 83, 1977, 89–91.MathSciNetMATHGoogle Scholar
  150. 1977.
    KISHORE, M. Odd perfect numbers not divisible by 3 are divisible by at least ten distinct primes. Math. Comp. 31, 1977, 274–279.MathSciNetMATHGoogle Scholar
  151. 1977.
    KISHORE, M. The Number of Distinct Prime Factors for Which σ(N) = 2N, σ(N) = 2N± 1 and Φ(N)I N-1. Ph.D. Thesis, University of Toledo, Ohio, 1977, 39 pages.Google Scholar
  152. 1977.
    MALM, D.E.G. On Monte-Carlo primality tests. Notices Amer. Math. Soc., 24, 1977, A-529, abstract 77T-A22.Google Scholar
  153. 1977.
    POMERANCE, C. On composite n for which Φ(n)|n-1. II Pacific J. Math., 69, 1977, 177–186.MathSciNetGoogle Scholar
  154. 1977.
    POMERANCE, C. Multiply perfect numbers, Mersenne primes and effective computability. Math. Ann., 226, 1977, 195–206.MathSciNetMATHGoogle Scholar
  155. 1977.
    SOLOVAY, R. & STRASSEN, V. A fast Monte-Carlo test for primality. Siam J. Comput., 6, 1977, 84–85.MathSciNetMATHGoogle Scholar
  156. 1977.
    STEWART, C.L. On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers. Proc. London Math. Soc., (3), 35, 1977, 425–447.MathSciNetMATHGoogle Scholar
  157. 1977.
    STEWART, C.L. Primitive divisors of Lucas and Lehmer numbers. In Transcendence Theory: Advances and Applications (edited by A. Baker & D.W. Masser), 79–92. Academic Press, London, 1977.Google Scholar
  158. 1977.
    WILLIAMS, H.C. On numbers analogous to the Carmichael numbers. Can. Math. Bull., 20, 1977, 133–143.MATHGoogle Scholar
  159. 1978.
    COHEN, G.L. On odd perfect numbers. Fibonacci Quart., 16, 1978, 523–527.MathSciNetMATHGoogle Scholar
  160. 1978.
    HAUSMAN, M. & SHAPIRO, H.N. Adding totatives. Math. Mag., 51, 1978, 284–288.MathSciNetMATHGoogle Scholar
  161. 1978.
    KISS, P. & PHONG, B.M. On a function concerning second order recurrences. Ann. Univ. Sci. Budapest, 21, 1978, 119–122.MATHGoogle Scholar
  162. 1978.
    RIVEST, R.L. Remarks on a proposed cryptanalytic attack on the M.I.T. public-key cryptosystem. Cryptologia, 2, 1978.Google Scholar
  163. 1978.
    RIVEST, R.L., SHAMIR, A. & ADLEMAN, L.M. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM, 21, 1978, 120–126.MathSciNetMATHGoogle Scholar
  164. 1978.
    WILLIAMS, H.C. Primality testing on a computer. Ars Comb., 5, 1978, 127–185.MATHGoogle Scholar
  165. 1978.
    YORINAGA, M. Numerical computation of Carmichael numbers. Math. J. Okayama Univ., 20, 1978, 151–163.MathSciNetMATHGoogle Scholar
  166. 1979.
    CHEIN, E.Z. Non-existence of odd perfect numbers of the form \(q_1^{{a_1}}q_2^{{a_2}}...q_6^{{a_6}}\) and \({5^{{a_1}}}q_2^{{a_2}}...q_9^{{a_9}}\) Ph.D. Thesis, Pennsylvania State Univ., 1979.Google Scholar
  167. 1980.
    BAILLIE, R. & WAGSTAFF, Jr., S.S. Lucas pseudoprimes. Math. Comp., 35, 1980, 1391–1417.MathSciNetMATHGoogle Scholar
  168. 1980.
    COHEN, G.L. & HAGIS, Jr., P. On the number of prime factors of n if Φ(n) | (n-1). Nieuw Arch. Wisk., (3), 28, 1980, 177–185.MathSciNetMATHGoogle Scholar
  169. 1980.
    HAGIS, Jr., P. Outline of a proof that every odd perfect number has at least eight prime factors. Math. Comp., 35, 1980, 1027–1032.MathSciNetMATHGoogle Scholar
  170. 1980.
    MONIER, L. Evaluation and comparison of two efficient probabilistic primality testing algorithms. Theoret. Comput. Sci., 12, 1980, 97–108.MathSciNetMATHGoogle Scholar
  171. 1980.
    POMERANCE, C., SELFRIDGE, J.L. & WAGSTAFF, Jr., S.S. The pseudoprimes to 25.109. Math. Comp., 35, 1980, 1003–1026.MathSciNetMATHGoogle Scholar
  172. 1980.
    RABIN, M.O. Probabilistic algorithm for testing primality. J. Nb. Th., 12, 1980, 128–138.MathSciNetMATHGoogle Scholar
  173. 1980.
    WAGSTAFF, Jr., S.S. Large Carmichael numbers Math. J. Okayama Univ., 22, 1980, 33–41.MathSciNetMATHGoogle Scholar
  174. 1980.
    WALL, D.W. Conditions for ΦP(N) to properly divide N-1. In A Collection of Manuscripts Related to the Fibonacci Sequence (edited by V.E. Hoggatt & M. Bicknell-Johnson), 205–208. 18th Anniv. Vol., Fibonacci Assoc., San Jose, 1980.Google Scholar
  175. 1981.
    BRENT, R.P. & POLLARD, J.M. Factorization of the eighth Fermat number. Math. Comp., 36, 1981, 627–630.MathSciNetMATHGoogle Scholar
  176. 1981.
    DIXON, J.D. Asymptotically fast factorization of integers. Math. Comp., 36, 1981, 255–260.MathSciNetMATHGoogle Scholar
  177. 1981.
    GROSSWALD, E. On Burgess’ bound for primitive roots modulo primes and an application to r(p). Amer. J. Math., 103, 1981, 1171–1183.MathSciNetMATHGoogle Scholar
  178. 1981.
    KISHORE, M. On odd perfect, quasi perfect and odd almost perfect numbers. Math. Comp., 36, 1981, 583–586.MathSciNetMATHGoogle Scholar
  179. 1981.
    KNUTH, D.E. The Art of Computer Programming, Vol. 2, 2nd edition. Addison-Wesley, Reading, Mass., 1981.MATHGoogle Scholar
  180. 1981.
    KONHEIM, A.G. Cryptography: A Primer. Wiley-Interscience, New York, 1981.MATHGoogle Scholar
  181. 1981.
    LENSTRA, Jr., H.W. Primality testing algorithms (after Adleman, Rumely and Williams). In Séminaire Bourbaki, expose No. 576. Lecture Notes in Math., #901, 243–257. Springer-Verlag, Berlin, 1981.Google Scholar
  182. 1981.
    LUNEBURG, H. Ein einfacher Beweis für den Satz von Zsigmondy über primitive Primteiler von A N — 1. In Geometries and Groups (edited by M. Aigner & D. Jungnickel). Lecture Notes in Math., #893, 219–222. Springer-Verlag, New York, 1981.Google Scholar
  183. 1981.
    POMERANCE, C. Recent developments in primality testing. Math. Intelligencer, 3, No. 3, 1981, 97–105.MathSciNetMATHGoogle Scholar
  184. 1981.
    SHOREY, T.N. & Stewart, C.L. On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, II. J. London Math. Soc., (2), 23, 1981, 17–23.MathSciNetMATHGoogle Scholar
  185. 1982.
    BRENT, R.P. Succinct proofs of primality for the factors of some Fermat numbers. Math. Comp., 38, 1982, 253–255.MathSciNetMATHGoogle Scholar
  186. 1982.
    HOOGENDOORN, P.J. On a secure public-key cryptosystem. In Computational Methods in Number Theory (edited by H.W. Lenstra, Jr. & R. Tijdeman), Part I, 159–168. Math. Centre Tracts, #154, Amsterdam, 1982.Google Scholar
  187. 1982.
    LENSTRA, Jr., H.W. Primality testing. In Computational Methods in Number Theory (edited by H.W. Lenstra, Jr. & R. Tijdeman), Part I, 55–77. Math. Centre Tracts, #154, Amsterdam, 1982.Google Scholar
  188. 1982.
    MASAI, P. & VALETTE, A. A lower bound for a counterexample in Carmichael’s conjecture. Boll. Un. Mat. Ital., (6), 1-A, 1982, 313–316.MathSciNetGoogle Scholar
  189. 1982.
    POMERANCE, C. Analysis and comparison of some integer factoring algorithms. In Computational Methods in Number Theory (edited by H.W. Lenstra, Jr. & R. Tijdeman), Part I, 89–139. Math. Centre Tracts, #154, Amsterdam, 1982.Google Scholar
  190. 1982.
    VAN EMDE BOAS, P. Machine models, computational complexity and number theory. In Computational Methods in Number Theory (edited by H.W. Lenstra, Jr. & R. Tijdeman), Part I, 7–42. Math. Centre Tracts, #154, Amsterdam, 1982.Google Scholar
  191. 1982.
    VORHOEVE, M. Factorizations algorithms of exponential order. In Computational Methods in Number Theory (edited by H.W. Lenstra, Jr. & R. Tijdeman), Part I, 79–87. Math. Centre Tracts, #154, Amsterdam, 1982.Google Scholar
  192. 1982.
    WILLIAMS, H.C. A class of primality tests for trinomials which includes the Lucas-Lehmer test. Pacific J. Math., 98, 1982, 477–494.MathSciNetMATHGoogle Scholar
  193. 1982.
    WILLIAMS, H.C. The influence of computers in the development of number theory. Comp. & Maths. with Appl., 8, 1982, 75–93.MATHGoogle Scholar
  194. 1982.
    WOODS, D. & HUENEMANN, J. Larger Carmichael numbers. Comput. Math. & Appl., 8, 1982, 215–216.MathSciNetMATHGoogle Scholar
  195. 1983.
    ADLEMAN, L.M., POMERANCE, C. & RUMELY, R.S. On distinguishing prime numbers from composite numbers. Annals of Math., (2), 117, 1983, 173–206.MathSciNetMATHGoogle Scholar
  196. 1983.
    BRILLHART, J., LEHMER, D.H., SELFRIDGE, J.L., TUCKERMAN, B. & WAGSTAFF, Jr., S.S. Factorizations of b n ± 1, b= 2, 3, 5, 6, 7, 10, 11, 12 up to High Powers. Contemporary Math., Vol. 22, Amer. Math. Soc., Providence, R.I., 1983.MATHGoogle Scholar
  197. 1983.
    HAGIS, Jr., P. Sketch of a proof that an odd perfect number relatively prime to 3 has at least eleven prime factors. Math. Comp., 40, 1983, 399–404.MathSciNetMATHGoogle Scholar
  198. 1983.
    KELLER, W. Factors of Fermat numbers and large primes of the form k - 2n + 1. Math. Comp., 41, 1983, 661–673.MathSciNetMATHGoogle Scholar
  199. 1983.
    KISHORE, M. Odd perfect numbers not divisible by 3, II. Math. Comp., 40, 1983, 405–411.MathSciNetMATHGoogle Scholar
  200. 1983.
    POMERANCE, C. & WAGSTAFF, Jr., S.S. Implementation of the continued fraction integer factoring algorithm. Congressus Numerantium, 37, 1983, 99–118.MathSciNetGoogle Scholar
  201. 1983.
    POWELL, B. Problem 6420 (On primitive roots). Amer. Math. Monthly, 90, 1983, p. 60.MathSciNetGoogle Scholar
  202. 1983.
    RUMELY, R.S. Recent advances in primality testing. Notices Amer. Math. Soc., 30, No. 5, 1983, 475–477.MathSciNetMATHGoogle Scholar
  203. 1983.
    SINGMASTER, D. Some Lucas pseudoprimes. Abstracts Amer. Math. Soc., 4, 1983, No. 83T-10–146, p. 197.Google Scholar
  204. 1983.
    YATES, S. Titanic primes. J. Recr. Math., 16, 1983/4, 250–260.MathSciNetGoogle Scholar
  205. 1984.
    COHEN, H. & LENSTRA, Jr., H.W. Primality testing and Jacobi sums. Math. Comp., 42, 1984, 297–330.MathSciNetMATHGoogle Scholar
  206. 1984.
    DIXON, J.D. Factorization and primality tests. Amer. Math. Monthly, 91, 1984, 333–352.MATHGoogle Scholar
  207. 1984.
    KEARNES, K. Solution of problem 6420. Amer. Math. Monthly, 91, 1984, p. 521.MathSciNetGoogle Scholar
  208. 1984.
    NICOLAS, J.L. Tests de primalitê. Expo. Math., 2, 1984, 223–234.MathSciNetMATHGoogle Scholar
  209. 1984.
    POMERANCE, C. Lecture Notes on Primality Testing and Factoring (Notes by G.M. Gagola Jr.). Math. Assoc. America, Notes, No. 4, 1984, 34 pages.MATHGoogle Scholar
  210. 1984.
    ROTKIEWICZ, A. On the congruence 2n E. 1 (mod n). Math. Comp., 43, 1984, 271–272.MathSciNetMATHGoogle Scholar
  211. 1984.
    WILLIAMS, H.C. An overview of factoring. In Advances in Cryptology (edited by D. Chaum), 71–80. Plenum, New York, 1984.Google Scholar
  212. 1984.
    WILLIAMS, H.C. Factoring on a computer. Math. Intelligencer, 6, 1984, No. 3, 29–36.MathSciNetMATHGoogle Scholar
  213. 1984.
    YATES, S. Sinkers of the Titanics. J. Recr. Math., 17, 1984/5, 268–274.MathSciNetGoogle Scholar
  214. 1985.
    BACH, E. Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms. A.C.M. Distinguished Dissertations. M.I.T. Press, Cambridge, 1985.Google Scholar
  215. 1985.
    BEDOCCHI, E. Note on a conjecture on prime numbers. Rev. Mat. Univ. Parma (4), 11, 1985, 229–236.MathSciNetMATHGoogle Scholar
  216. 1985.
    BOSMA, W. Primality testing using elliptic curves. Math. Inst., Univ. Amsterdam, Report 85–12, 54 pages, 1985.Google Scholar
  217. 1985.
    DUBNER, H. & DUBNER, R. The development of a powerful low-cost computer for number theory applications. J. Recr. Math., 18, 1985/6, 92–96.Google Scholar
  218. 1985.
    KELLER, W. The 17th prime of the form 5 . 2n + 1. Abstract Amer. Math. Soc., 6, No. 1, 1985, p. 121.Google Scholar
  219. 1985.
    ONDREJKA, R. Ten extraordinary primes. J. Recr. Math., 18, 1985/86, 87–92.Google Scholar
  220. 1985.
    RIESEL, H. Prime Numbers and Computer Methods for Factorization. Birkhäuser, Boston, 1985.MATHGoogle Scholar
  221. 1985.
    WAGON, S. Perfect numbers. Math. Intelligencer, 7, No. 2, 1985, 66–68.MathSciNetMATHGoogle Scholar
  222. 1986.
    ADLEMAN, L.M. & HUANG, M.-D.A. Recognizing primes in random polynomial time. Preprint, 1986.Google Scholar
  223. 1986.
    ERDOS, P. & POMERANCE, C. On the number of false witnesses for a composite number. Math. Comp., 46, 1986, 259–279.MathSciNetGoogle Scholar
  224. 1986.
    KISS, P., PHONG, B.M. & LIEUWENS, E. On Lucas pesudoprimes which are products of s primes. In Fibonacci Numbers and their Applications (edited by A.N. Philippou, G.E. Bergum & A.F. Horadam), 131–139. Reidel, Dordrecht, 1986.Google Scholar
  225. 1986.
    LENSTRA, Jr., H.W. Elliptic curves and number-theoretic algorithms. Math. Inst., Univ. Amsterdam, Report 86–19, 18 pages, 1986.Google Scholar
  226. 1986.
    LENSTRA, Jr., H.W. Factoring integers with elliptic curves. Math. Inst., Univ. Amsterdam. Report 86–18, 19 pages, 1986.Google Scholar
  227. 1986.
    SHEN, M.K. On the congruence 2n-k - 1 (mod n). Math. Comp., 46, 1986, 715–716.MathSciNetMATHGoogle Scholar
  228. 1986.
    WAGON, S. Carmichael’s “Empirical Theorem”. Math. Intelligencer, 8, No. 2, 1986, 61–62.MathSciNetMATHGoogle Scholar
  229. 1986.
    WAGON, S. Primality testing. Math. Intelligencer, 8, No. 3, 1986, 58–61.MathSciNetMATHGoogle Scholar
  230. 1987.
    ADLEMAN, L.M. & McCURLEY, K.S. Open problems in number theoretic complexity, in Discrete Algorithms and Complexity, 237–262. Academic Press, New York, 1987.Google Scholar
  231. 1987.
    BRILLHART, J., MONTGOMERY, P.L. & SILVERMAN, R.D. Tables of Fibonacci and Lucas factorizations. To appear.Google Scholar
  232. 1987.
    COHEN, H. & LENSTRA, A.K. Implementation of a new primality test (and Supplement). Math. Comp., 48, 1987, 103–121, and Si-S4.MathSciNetMATHGoogle Scholar
  233. 1987.
    KISS, P. & PHONG, B.M. On a problem of A. Rotkiewicz. Math. Comp., 48, 1987, 751–755.MATHGoogle Scholar
  234. 1987.
    MCDANIEL, W.L. The generalized pseudoprime congruence a n-k = bn-k (mod n). C.R. Math. Rep. Acad. Sci. Canada, 9, 1987, 143–148.MathSciNetMATHGoogle Scholar
  235. 1987.
    POMERANCE, C. Very short primality proofs. Math. Comp., 48, 1987, 315–322.MathSciNetMATHGoogle Scholar
  236. 1987.
    YOUNG, J. & BUELL, D.A. The twentieth Fermat number is composite. Math. Comp. (to appear).Google Scholar
  237. 1988.
    MCDANIEL, W.L. The existence of solutions of the generalized pseudoprime congruence ac n- k bcn-k (mod n). Preprint, to appear in 1988(?)Google Scholar
  238. 1988.
    PHONG, B.M. Generalized solution of Rotkiewicz’s problem. Mat. Lapok, to appear in 1988(?) Chapter 3Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations