Advertisement

How Many Prime Numbers are There?

  • Paulo Ribenboim

Abstract

The answer to the question of how many prime numbers exist is given by the fundamental theorem:

There exist infinitely many prime numbers.

Keywords

Prime Number Prime Ideal Fundamental Theorem Arithmetic Progression Fibonacci Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1878.
    KUMMER, E.E. Neuer elementarer Beweis, dass die Anzahl aller Primzahlen eine unendliche ist. Monatsber. Akad. d. Wiss., Berlin, 1878/1879, 777–778.Google Scholar
  2. 1890.
    STIELTJES, T.J. Sur la thgorie des nombres. Etude bibliographique. An. Fac. Sci. Toulouse, 4, 1890, 1–103.Google Scholar
  3. 1897.
    THUE, A. Mindre meddelelser II. Et bevis for at primtallenes antal er unendeligt. Arch. f. Math. og Naturv., Kristiania, 1897, 19, No. 4, 3–5. Reprinted in Selected Mathematical Papers (edited by T. Nagell, A. Selberg & S. Selberg), 31–32. Universitetsforlaget, Oslo, 1977.Google Scholar
  4. 1924.
    POLYA, G. & SZEGO, G. Aufgaben und Lehrsätze aus der Analysis, 2 vols. Springer-Verlag, Berlin, 1924 (4th edition, 1970).CrossRefGoogle Scholar
  5. 1955.
    FüRSTENBERG, H. On the infinitude of primes. Amer. Math. Monthly, 62, 1955, p. 353.CrossRefGoogle Scholar
  6. 1959.
    GOLOMB, S.W. A connected topology for the integers. Amer. Math. Monthly, 66, 1959, 663–665.MathSciNetMATHCrossRefGoogle Scholar
  7. 1963.
    MULLIN, A.A. Recursive function theory (A modern look on an Euclidean idea). Bull. Amer. Math. Soc., 69, 1963, p. 737.MathSciNetCrossRefGoogle Scholar
  8. 1964.
    EDWARDS, A.W.F. Infinite coprime sequences. Math. Gazette, 48, 1964, 416–422.CrossRefGoogle Scholar
  9. 1967.
    SAMUEL, P. Théorie Algébrique des Nombres. Hermann, Paris, 1967. English translation published by Houghton-Mifflin, Boston, 1970.MATHGoogle Scholar
  10. 1968.
    COX, C.D. & VAN DER POORTEN, A.J. On a sequence of prime numbers. J. Austr. Math. Soc., 1968, 8, 571–574.MATHCrossRefGoogle Scholar
  11. 1972.
    BORNING, A. Some results for 1 and 2.3.5• • •p + 1. Math. Comp., 26, 1972, 567–570.MathSciNetMATHGoogle Scholar
  12. 1980.
    TEMPLER, M. On the primality of k! + 1 and 2*3* . • .*p + 1. Math. Comp., 34, 1980, 303–304.MathSciNetMATHGoogle Scholar
  13. 1980.
    WASHINGTON, L.C. The infinitude of primes via commutative algebra. Unpublished manuscript.Google Scholar
  14. 1982.
    Buhler, J.P., Crandall, R.E. & Penk, M.A. Primes of the form n! ± 1 and 2.3.5• • •p ± 1. Math. of Comp., 38, 1982, 639–643.MathSciNetMATHGoogle Scholar
  15. 1985.
    DUBNER, H. & DUBNER, H. The development of a powerful low-cost computer for number theory applications. J. Recr. Math., 18 (2), 1985/1986, 92–96.Google Scholar
  16. 1987.
    DUBNER, H. Factorial and primorial primes. J. Recr. Math., 19, 1987, 197–203.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCanada

Personalised recommendations