Regulation of Membrane Transport

  • Steven C. Quay
  • Dale L. Oxender
Part of the Biological Regulation and Development book series (BRD, volume 2)


The intracellular levels of most nutrients are carefully controlled to meet the varying demands for nutrients presented by the normal growth cycle of the cell. The cell must balance the increases in nutrient levels (such as, synthesis) with the decreases in these nutrients (metabolism or macromolecular synthesis). Active transport is usually characterized as a process that will increase the cellular level of a nutrient. Most transport processes, however, are reversible to some extent and serve for exit as well as entry of nutrients. In a facilitated diffusion system the influx and efflux capacities are equal. In ative transport systems the coupling of metabolic energy can lead to chemical gradients of transported solutes. Since transport activities alter the cellular levels of nutrients it is important that the cell have a way of regulating them. Regulation of the biosynthesis of various cellular nutrients has been extensively studied in the past, but regulation of transport systems has been largely ignored until recently.


Amino Acid Transport Amino Acid Uptake Hexose Transport Amino Acid Transport System Chick Embryo Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, J., and Epstein, W., 1974, Phosphotransferase system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 71:2895.PubMedCrossRefGoogle Scholar
  2. Alfoldi, L., and Kerekes, E., 1964, Neutralization of the amino acid sensitivity of RCrel Escherichia coli, Biochim. Biophys. Acta 91:155.Google Scholar
  3. Ames, G. F., 1964, Uptake of amino acids by Salmonella typhimurium, Arch. Biochem. Biophys. 104:1.PubMedCrossRefGoogle Scholar
  4. Anderson, J. J., and Oxender, D. L., 1977, E. coli mutants lacking binding protein and other components of the branched-chain amino acid transport system, J. Bacteriol. 130:384.PubMedGoogle Scholar
  5. Anderson, J. J., Quay, S. C., and Oxender, D. L., 1976, Mapping of two loci affecting regulation of branchedchain amino acid transport in Escherichia coli K-12, J. Bacteriol. 126:80.PubMedGoogle Scholar
  6. Beckwith, J., 1963, Restoration of operon activity by suppressors, Biochim. Biophys. Acta 76:162.PubMedCrossRefGoogle Scholar
  7. Benko, P. V., Wood, T. C., and Segel, I. H., 1967, Specificity and regulation of methionine transport in filamentous fungi, Arch. Biochem. Biophys. 122:783.CrossRefGoogle Scholar
  8. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249:7747.PubMedGoogle Scholar
  9. Bertrand, K., Korn, L., Lee, F., Platt, T., Squires, C. L., Squires, C., and Yanofsky, C., 1975, New features of the regulation of the tryptophan operon, Science 189:22.PubMedCrossRefGoogle Scholar
  10. Blobel, G., and Dobberstein, B., 1975a, Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma, J. Cell Biol. 67:835.PubMedCrossRefGoogle Scholar
  11. Blobel, G., and Dobberstein, B., 1975b, Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components, J. Cell Biol. 67:852.PubMedCrossRefGoogle Scholar
  12. Blobel, G., and Sabatini, D. D., 1971, Ribosome-membrane interaction in eukaryotic cells, Biomembranes 2:193.CrossRefGoogle Scholar
  13. Borek, E., Ryan, A., and Rockenbach, J., 1955, Nucleic acid metabolism in relation to the lysogenic phenomenon, J. Bacteriol. 69:460.PubMedGoogle Scholar
  14. Browman, R. L., Goldenbaum, P. E., and Dobrogosz, W. J., 1970, The effect of amino acids on the ability of cyclic AMP to reverse catabolite repression in Escherichia coli, Biochem. Biophys. Res. Commun. 39:401.CrossRefGoogle Scholar
  15. Brown, K. D., 1970, Formation of aromatic amino acid pools in Escherichia coli K12, J. Bacteriol. 104:177.PubMedGoogle Scholar
  16. Burns, R. O., Calvo, J. M., Margolin, P., and Umbarger, H. E., 1966, Expression of the leucine operon, J. Bacteriol. 91:5170.Google Scholar
  17. Burrous, S. E., and DeMoss, R. D., 1963, Studies on tryptophan permease in Escherichia coli, Biochim. Biophys. Acta 73:623.PubMedCrossRefGoogle Scholar
  18. Calhoun, D. H., 1976, Threonine deaminase from Escherichia coli. Feedback-hypersensitive enzyme from a genetic regulatory mutant, J. Bacteriol. 126:56.PubMedGoogle Scholar
  19. Christopher, C. W., Colby, W. W., and Ullrey, D., 1976, Derepression and carrier turnover: Evidence for two distinct mechanisms of hexose transport regulation in animal cells, J. Cell. Physiol. 89:683.PubMedCrossRefGoogle Scholar
  20. Christopher, C. W., Colby, W., Ullrey, D., and Kalckar, H. M., 1977, Comparative studies of glucose-fed and glucose-starved hamster cell cultures: Responses in galactose metabolism, J. Cell. Physiol. 90:387.PubMedCrossRefGoogle Scholar
  21. Cordaro, J. C., Anderson, R. P., Grogan, E. W., Wenzel, D., Engler, M., and Roseman, S., 1974, Promoterlike mutation affecting HPr and Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 120:245.PubMedGoogle Scholar
  22. Crabeel, M., and Grenson, M., 1970, Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccaromyces cerevisiae, Eur. J. Biochem. 14:197.PubMedCrossRefGoogle Scholar
  23. Cunningham, D. D., and Pardee, A. B., 1969, Transport changes rapidly initiated by serum addition to contactinhibited 3T3 cells, Proc. Natl. Acad. Sci. U.S.A. 64:1049.PubMedCrossRefGoogle Scholar
  24. Davie, E. W., Fujikawa, K., Legaz, M. E., and Kato, H., 1975, Role of proteases in blood coagulation, in: Proteases and Biological Control (E. Reich, D. B. Rifkin, and E. Shaw, eds.), Vol. 2, pp. 65–78, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  25. Deutch, C. E., and Soifer, R. L., 1975, Regulation of proline catabolism by leucyl-, phenyalanyl-tRNA protein transferase, Proc. Natl. Acad. Sci. U.S.A. 72:405.PubMedCrossRefGoogle Scholar
  26. Eckhart, W., and Weber, M. J., 1973, Uptake of 2-deoxyglucose by BALB/3T3 cells: Changes after polyoma infection, Virology 61:223.CrossRefGoogle Scholar
  27. Eidlic, T., and Neidhardt, F. C., 1965, Role of valyl-sRNA synthetase in enzyme repression, Proc. Natl. Acad. Sci. U.S.A. 53:539.PubMedCrossRefGoogle Scholar
  28. Foster, D. D., and Pardee, A. B., 1969, Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips, J. Biol. Chem. 244:2675.PubMedGoogle Scholar
  29. Fournier, M. J., and Peterkofsky, A., 1975, Formation of chromatographically unique species of transfer ribonucleic acid during amino acid starvation of relaxed-control Escherichia coli, J. Bacteriol. 122:538.PubMedGoogle Scholar
  30. Fraenkel, D. G., 1968, The phosphoenolpyruvate-initiated pathway of fructose metabolism in Escherichia coli, J. Biol. Chem. 243:6458.PubMedGoogle Scholar
  31. Fraser, J., and Newman, E. M., 1975, Derivation of glycine from threonine in Escherichia coli K-12 mutants, J. Bacteriol. 122:810.PubMedGoogle Scholar
  32. Freundlich, M., Burns, R. O., and Umbarger, H. E., 1962, Control of isoleucine, valine, and leucine biosynthesis. I. Multivalent repression, Proc. Natl. Acad. Sci. U.S.A. 48:1804.PubMedCrossRefGoogle Scholar
  33. Furlong, C. E., and Weiner, J. H., 1970, Purification of a leucine specific binding protein from Escherichia coli, Biochem. Biophys. Res. Commun. 38:1076.PubMedCrossRefGoogle Scholar
  34. Gale, E. F., 1943, Factors influencing enzymic activities of bacteria, Bacteriol. Rev. 7:139.PubMedGoogle Scholar
  35. Gazzola, G. C., Franchi, R., Saibene, V., Ronchi, P., and Guidotti, G. G., 1972, Regulation of amino acid transport in chick embryo heart cells. I. Adaptive system of mediation for neutral amino acids, Biochim. Biophys. Acta 266:407.PubMedCrossRefGoogle Scholar
  36. Goldberg, A. L., and St. John, A. C., 1976, Intracellular protein degradation in mammalian and bacterial cells: Part 2, Annu. Rev. Biochem. 45:747.PubMedCrossRefGoogle Scholar
  37. Gonzalez, J. E., and Peterkofsky, A., 1977, The mechanism of sugar-dependent-repression of synthesis of catabolic enzymes in Escherichia coli, J. Supramol. Struct. 6:495.PubMedCrossRefGoogle Scholar
  38. Greene, R. C., and Radovich, C., 1975, Role of methionine in the regulation of serine hydroxymethyl-transferase in Escherichia coli., J. Bacteriol. 124:269.PubMedGoogle Scholar
  39. Guardiola, J., DeFelice, M., Klopotowski, T., and Iaccarino, M., 1974a, Multiplicity of isoleucine, leucine, and valine transport systems in Escherichia coli K12, J. Bacteriol. 117:383.Google Scholar
  40. Guardiola, J., DeFelice, M., Klopotowski, T., and Laccarino, M., 1974b, Mutations affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coli K-12, J. Bacteriol. 117:393.PubMedGoogle Scholar
  41. Guidotti, G. G., Gazzola, G. C., Borghetti, A. F., and Franchi-Gazzola, R., 1975, Adaptive regulation of amino acid transport across the cell membrane in avian and mammalian tissues, Biochim. Biophys. Acta 406:264.PubMedCrossRefGoogle Scholar
  42. Guidotti, G. G., Borghetti, A. F., Gazzola, G. C., Tramacere, M., and Dall’asta, V., 1976, Insulin regulation of amino acid transport in mesenchymal cells from avian and mammalian tissues, Biochem. J. 160:281.PubMedGoogle Scholar
  43. Hanson, T. E., and Anderson, R. L., 1968, Phosphoenolpyruvate-dependent formation of D-fructose-1-phosphate by a four-component phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 61:269.PubMedCrossRefGoogle Scholar
  44. Haseltine, W. A., and Block, R., 1973, Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci. U.S.A. 70:1564.PubMedCrossRefGoogle Scholar
  45. Hatanaka, M., 1976, Saturable and nonsaturable process of sugar uptake: Effect of oncogenic transformation on transport and uptake of nutrients, J. Cell. Physiol. 89:745.PubMedCrossRefGoogle Scholar
  46. Heaton, J. H., and Gelehrter, T. D., 1977, Derepression of amino acid transport by amino acid starvation in rat hepatoma cells, J. Biol. Chem. 252:2900.PubMedGoogle Scholar
  47. Heinz, E., and Durbin, R. P., 1957, Studies of the chloride transport in the gastric mucosa of the frog, J. Gen. Physiol. 41:101.PubMedCrossRefGoogle Scholar
  48. Heinz, E., and Walsh, P. O., 1958, Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells, J. Biol. Chem. 233:1488.PubMedGoogle Scholar
  49. Hillman, R. E., and Otto, E. F., 1974, Transport of L-isoleucine by cultured human fibroblasts, J. Biol. Chem. 249:3430.PubMedGoogle Scholar
  50. Hirshfield, I. N., Yeh, F. M., and Sawyer, L. E., 1975, Metabolites influence control of lysine transfer ribonucleic acid synthetase formation in Escherichia coli K12, Proc. Natl. Acad. Sci. U.S.A. 72:1364.PubMedCrossRefGoogle Scholar
  51. Hogg, R. L., and Hermodson, M. A., 1977, Amino acid sequence of the L-arabinose-binding protein from Escherichia coli B/r, J. Biol. Chem. 252:5135.PubMedGoogle Scholar
  52. Holley, R. W., 1972, A unifying hypothesis concerning the nature of malignant growth, Proc. Natl. Acad. Sci. U.S.A. 69:2840.PubMedCrossRefGoogle Scholar
  53. Horvath, I., and Gado, I., 1965, Possible causes of leucine inhibition in Escherichia coli K<sub>12</sub> λ-28, Acta Microbiol. Acad. Sci. Hung. 12:103.Google Scholar
  54. Ikemura, T., and Dahlberg, J. E., 1973, Small ribonucleic acids of Escherichia coli. II. Noncoordinate accumulation during stringent control, J. Biol. Chem. 248:5033.PubMedGoogle Scholar
  55. Inouye, H., and Beckwith, J., 1977, Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro, Proc. Natl. Acad. Sci. U.S.A. 74:1440.PubMedCrossRefGoogle Scholar
  56. Inouye, H., Pratt, C., Beckwith, J., and Torriani, A., 1977, Alkaline phosphatase synthesis in a cell-free system using DNA and RNA templates, J. Mol. Biol. 110:75.PubMedCrossRefGoogle Scholar
  57. Inui, Y., and Akedo, H., 1965, Amino acid uptake by Escherichia coli grown in presence of amino acids. Evidence for repressibility of amino acid uptake, Biochim. Biophys. Acta 94:143.PubMedCrossRefGoogle Scholar
  58. Isselbacher, K. J., 1972, Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture, Proc. Natl. Acad. Sci. U.S.A. 69:585.PubMedCrossRefGoogle Scholar
  59. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3:318.PubMedCrossRefGoogle Scholar
  60. Kadner, R. J., 1975, Regulation of methionine transport activity in Escherichia coli, J. Bacteriol. 122:110.PubMedGoogle Scholar
  61. Kalckar, H. M., and Ullrey, D., 1973, Two distinct types of enhancement of galactose uptake into hamster cells: Tumor virus transformation and hexose starvation, Proc. Natl. Acad. Sci. U.S.A. 70:2502.PubMedCrossRefGoogle Scholar
  62. Kalckar, H. M., Christopher, C. W., and Ullrey, D., 1976, Neoplastic potentials and regulation of uptake of nutrients. II. Inverse regulation of uptake of hexose and amino acid analogues in the neoplastic GIV line, J. Cell. Physiol. 89:765.PubMedCrossRefGoogle Scholar
  63. Kane, J. F., 1975, Metabolic interlock: Mediation of interpathway regulation by divalent cations, Arch. Biochem. Biophys. 170:452.PubMedCrossRefGoogle Scholar
  64. Kano-Sueoka, T., and Sueoka, N., 1969, Leucine tRNA and cessation of Escherichia coli protein synthesis upon phage T2 infection, Proc. Natl. Acad. Sci. U.S.A. 62:1229.PubMedCrossRefGoogle Scholar
  65. Kanzaki, S., and Anraku, Y., 1971, Transport of sugars and amino acids in bacteria. IV. Regulation of valine transport activity by valine and cysteine, J. Biochem. (Tokyo) 70:215.Google Scholar
  66. Kimelberg, H. K., and Mayhew, E., 1975, Increased ouabain-sensitive <sup>86</sup>Rb<sup>+</sup> uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines, J. Biol. Chem. 250:100.PubMedGoogle Scholar
  67. Kitchingman, G. R., and Fournier, M. J., 1975, Unbalanced growth and the production of unique transfer ribonucleic acids in relaxed-control Escherichia coli, J. Bacteriol. 124:1382.PubMedGoogle Scholar
  68. Kitchingman, G. R., and Fournier, M. J., 1977, Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: Structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation, Biochemistry 16:2013.CrossRefGoogle Scholar
  69. Kitchingman, G. R., Webb, E., and Fournier, M. J., 1976, Unique phenylalanine transfer ribonucleic acids in relaxed control Escherichia coli: Genetic origin and some functional properties, Biochemistry 15:1848.PubMedCrossRefGoogle Scholar
  70. Kjeldgaard, N. O., Maaløe, O., and Schaechter, M., 1958, The transition between different physiological states during balanced growth of Salmonella typhimurium, J. Gen. Microbiol. 19:607.PubMedCrossRefGoogle Scholar
  71. Kletzien, R. F., and Perdue, J. F., 1974, Sugar transport in chick embryo fibroblasts. II. Alterations in transport following transformation by a temperature-sensitive mutant of the Rous-sarcoma virus, J. Biol. Chem. 249:3375.PubMedGoogle Scholar
  72. Kletzien, R. F., and Perdue, J. F., 1975, Induction of sugar transport in chick embryo fibroblasts by hexose starvation: Evidence for transcriptional regulation of transport, J. Biol. Chem. 250:593.PubMedGoogle Scholar
  73. Kletzien, R. F., and Perdue, J. F., 1976, Regulation of sugar transport in chick embryo fibroblasts and in fibroblasts transformed by a temperature-sensitive mutant of the Rous sarcoma virus, J. Cell. Physiol. 89:723.PubMedCrossRefGoogle Scholar
  74. Korn, L. J., and Yanofsky, C., 1976, Polarity suppressors defective in transcription termination at the attenuation of the tryptophan operon of Escherichia coli have altered rho factor, J. Mol. Biol. 106:231.PubMedCrossRefGoogle Scholar
  75. Kornberg, H. L., and Reeves, R. E., 1972, Inducible phosphoenolpyruvate dependent hexose phosphotransferase activities in Escherichia coli, Biochem. J. 128:1339.PubMedGoogle Scholar
  76. Laemmli, U. K., 1975, Cleavage associated with the maturation of the head of bacteriophage T4, in: Proteases and Biological Control (E. Reich, D. B. Rifkin, and E. Shaw, eds.), Vol. 2, pp. 661–687, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  77. Lengeler, J., 1975, Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K12: Isolation and mapping, J. Bacteriol. 124:26.PubMedGoogle Scholar
  78. Lengeler, J., 1977, Analysis of mutations affecting the dissimilation of galactitol (Dulcitol) in Escherichia coli K12, Mol. Gen. Genet. 152:83.PubMedCrossRefGoogle Scholar
  79. Levinthal, M., Williams, L. S., Levinthal, M., and Umbarger, H. E., 1973, Role of threonine deaminase in the regulation of isoleucine and valine biosynthesis, Nature (London) New Biol. 246:65.CrossRefGoogle Scholar
  80. McGinnis, J. F., and Paigen, K., 1969, Catanolite inhibition: A general phenomenon in the control of carbohydrate utilization, J. Bacteriol. 100:902.PubMedGoogle Scholar
  81. McGinnis, E., and Williams, L. S., 1971, Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli, J. Bacteriol. 108:254.PubMedGoogle Scholar
  82. Magasanik, B., 1970, Catabolite repression, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 189–219, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  83. Markman, R. S., and Sutherland, E. W., 1965, Adenosine 3′,5′-phosphate in Escherichia coli, J. Biol. Chem. 240:1309.Google Scholar
  84. Martineau, R., Kohlbacher, M., and Shaw, S. N., 1972, Enhancement of hexose entry into chick fibroblasts by starvation: Differential effect on galactose and glucose, Proc. Natl. Acad. Sci. U.S.A. 69:3407.PubMedCrossRefGoogle Scholar
  85. Monod, J., 1947, Phenomenon of enzymatic adaption and its bearings on problems of genetics and cellular differentiation, Growth 11:223.Google Scholar
  86. Moore, P. A., Jayme, D. W., and Oxender, D. L., 1977, A role for aminoacyl-tRNA synthetases in the regulation of amino acid transport in mammalian cell lines, J. Biol. Chem. 252:7427.PubMedGoogle Scholar
  87. Neidhardt, F. C., 1963, Properties of a bacterial mutant lacking amino acid control of RNA synthesis, Biochim. Biophys. Acta 68:365.PubMedCrossRefGoogle Scholar
  88. Neurath, H., 1975, Limited proteolysis and zymogen activation, in: Proteases and Biological Control (E. Reich, D. B. Rifkin, and E. Shaw, Eds.), Vol. 2, pp. 51–64, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  89. Neville, M. M., Suskind, S. R., and Roseman, S., 1971, A derepressible active transport system for glucose in Neurospora crassa, J. Biol. Chem. 246:1294.PubMedGoogle Scholar
  90. Ovchinnikov, A. Y.,Aldanova, N. A., Grinkevich, V. A., Arzamazova, N. M., Moroz, I. N., and Nazimov, I. V., 1977, The primary structure of LIV-binding protein from E. coli, Bioorg. Chem. 3:564.Google Scholar
  91. Oxender, D. L., 1972, Membrane transport, Annu. Rev. Biochem. 41:777.PubMedCrossRefGoogle Scholar
  92. Oxender, D. L., and Christensen, H. N., 1963, Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell, J. Biol. Chem. 238:3686.PubMedGoogle Scholar
  93. Oxender, D. L., and Quay, S. C., 1976a, Regulation of leucine transport and binding proteins in Escherichia coli, J. Cell. Physiol. 89:517.PubMedCrossRefGoogle Scholar
  94. Oxender, D. L., and Quay, S. C., 1976b, Isolation and characterization of membrane binding proteins, in: Methods in Membrane Biology (E. D. Korn, ed.), Vol, 6, pp. 183–242, Plenum Press, New York.CrossRefGoogle Scholar
  95. Oxender, D. L., Lee, M., and Ceccini, G., 1976, Regulation of transport in mammalian cell culture, in: Progress in Clinical and Biological Research, Membranes and Neoplasia: New Approaches and Strategies (V. T. Marchesi, ed.), Vol. 9, pp. 41–47, Alan R. Liss, New York.Google Scholar
  96. Oxender, D. L., Lee, M., Moore, P. A., and Cecchini, G., 1977a, Neutral amino acid transport systems of tissue culture cells, J. Biol. Chem. 252:2675.PubMedGoogle Scholar
  97. Oxender, D. L., Lee, M., and Cecchini, G., 1977 b, Regulation of amino acid transport activity and growth rate of animal cells in culture, J. Biol. Chem. 252:2680.PubMedGoogle Scholar
  98. Pall, M. L., 1971, Amino acid transport in Neurospora crassa. IV. Properties and regulation of methionine transport, Biochim. Biophys. Acta 233:201.PubMedCrossRefGoogle Scholar
  99. Pardee, A. B., 1964, Cell division and a hypothesis of cancer, Natl. Cancer Inst. Monogr. 14:7.PubMedGoogle Scholar
  100. Pardee, A. B., and Prestidge, L. S., 1955, Induced formation of serine and threonine deaminase by Escherichia coli, J. Bacteriol. 70:667.PubMedGoogle Scholar
  101. Peck, W. A., Rockwell, L. H., and Lichtman, M. A., 1976, Adaptive enhancement of amino acid uptake and exodus by thymic lymphocytes: Influence of pH, J. Cell. Physiol. 89:417.PubMedCrossRefGoogle Scholar
  102. Pedersen, F. S., Lund, E., and Kjeldgaard, N. O., 1973, Codon specific, tRNA dependent in vitro synthesis of ppGpp and ppGpp, Nature (London), New Biol. 243:13.Google Scholar
  103. Penrose, W. R., Nichoalds, G. E., Piperno, J. R., and Oxender, D. L., 1968, Purification and properties of a leucine-binding protein from Escherichia coli, J. Biol. Chem. 243:5921.PubMedGoogle Scholar
  104. Perdue, J. F., 1976, Loss of the post-translational control of nutrient transport in in vitro and in vivo virustransformed chicken cells, J. Cell. Physiol. 89:729.PubMedCrossRefGoogle Scholar
  105. Peterkofsky, A., and Gazdar, C., 1974, Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B, Proc. Natl. Sci. U.S.A. 71:2324.CrossRefGoogle Scholar
  106. Peterkofsky, A., and Gazdar, C., 1975, Interaction of enzyme I of the phosphoenolpyruvate: Sugar phosphotransferase system with adenylate cyclase of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72:2920.PubMedCrossRefGoogle Scholar
  107. Piperno, J. R., and Oxender, D. L., 1968, Amino acid transport systems in Escherichia coli K12, J. Biol. Chem. 243:5914.PubMedGoogle Scholar
  108. Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate: Sugar phosphotransferase system, Biochim. Biophys. Acta 457:213.CrossRefGoogle Scholar
  109. Quay, S. C., and Christensen, H. N., 1974, Basis of transport discrimination of arginine from other basic amino acids in Salmonella typhimurium, J. Biol. Chem. 249:7011.PubMedGoogle Scholar
  110. Quay, S. C., and Oxender, D. L., 1976, Regulation of branched-chain amino acid transport in Escherichia coli, J. Bacteriol. 127:1225.PubMedGoogle Scholar
  111. Quay, S. C., and Oxender, D. L., 1977, Regulation of amino acid transport in Escherichia coli by transcriptional termination factor rho, J. Bacteriol. 130:1024.PubMedGoogle Scholar
  112. Quay, S. C., Oxender, D. L., Tsuyumu, S., and Umbarger, H. E., 1975a, Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria, J. Bacteriol. 122:994.PubMedGoogle Scholar
  113. Quay, S. C., Kline, E. L., and Oxender, D. L., 1975b, Role of the leucyl-tRNA synthetase in regulation of transport, Proc. Natl. Acad. Sci. U.S.A. 72:3921.PubMedCrossRefGoogle Scholar
  114. Quay, S. C., Dick, T. E., and Oxender, D. L., 1977, Role of transport systems in amino acid metabolism: Leucine toxicity and the branched-chain amino acid transport systems, J. Bacteriol. 129:1257.PubMedGoogle Scholar
  115. Quay, S. C., Lawther, R. P., Hatfield, G. W., and Oxender, D. L., 1978, Branched-chain amino acid transport regulation in mutants blocked in tRNA maturation and transcriptional termination, J. Bacteriol. 134:683.PubMedGoogle Scholar
  116. Rahmanian, M., and Oxender, D. L., 1972, Derepressed leucine transport activity in Escherichia coli, J. Supramol. Struct. 1:55.PubMedCrossRefGoogle Scholar
  117. Rahmanian, M., Claus, D. R., and Oxender, D. L., 1973, Multiplicity of leucine transport systems in Escherichia coli K-12, J. Bacteriol. 116:1258.PubMedGoogle Scholar
  118. Reich, E., Rifkin, D. B., and Shaw, E. (eds.), 1975, Proteases and Biological Control, Vol. 2, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  119. Reynolds, R. A., and Segal, S., 1976, Regulatory characteristics of amino acid transport in newborn rat renal cortex cells, Biochim. Biophys. Acta 426:513.Google Scholar
  120. Ribbons, D. W., and Brew, K. (eds.), 1976, Proteolysis and Physiological Regulation, Miami Winter Symposia, Vol. II, Academic Press, New York.Google Scholar
  121. Richaud, C., Mazat, J.-P., Felenbok, B., and Patte, J.-C., 1974, The role of lysine and leucine binding on the catalytic and structural properties of aspartokinase III of Escherichia coli K12, Eur. J. Biochem. 48:147.PubMedCrossRefGoogle Scholar
  122. Riggs, T. R., and Pan, M. W., 1972, Transport of amino acids into the oestrogen-primed uterus: Enhancement of uptake by a preliminary incubation, Biochem. J. 128:19.PubMedGoogle Scholar
  123. Ring, K., Gross, W., and Heinz, E., 1970, Negative feedback regulation of amino acid transport in Streptomyces hydrogenans, Arch. Biochem. Biophys. 137:243.PubMedCrossRefGoogle Scholar
  124. Rizzino, A. A., Bresalier, R. S., and Freundlich, M., 1974, Derepressed levels of the isoleucine-valine and leucine enzymes in hisT 1504, a strain of Salmonella typhimurium with altered leucine transfer ribonucleic acid, J. Bacteriol. 117:449.PubMedGoogle Scholar
  125. Robbins, J. C., 1973, Ph.D. thesis, Transport systems for alanine, serine, and glycine in Escherichia coli K-12, The University of Michigan, Ann Arbor.Google Scholar
  126. Robbins, J. C., and Oxender, D. L., 1973, Transport systems for alanine, serine and glycine in Escherichia coli K-12, J. Bacteriol. 116:12.PubMedGoogle Scholar
  127. Rogerson, A. C., and Freundlich, M., 1970, Control of isoleucine, valine, and leucine biosynthesis. VIII. Mechanism of growth inhibition by leucine in relaxed and stringent strains of Escherichia coli K12, Biochim. Biophys. Acta 208:87.PubMedCrossRefGoogle Scholar
  128. Roon, R. J., Larimore, F., and Levy, J. S., 1975, Inhibition of amino acid transport by ammonium ion in Saccaromyces cerevisiae, J. Bacteriol 124:325.PubMedGoogle Scholar
  129. Roon, R. J., Levy, J. S., and Larimore, F., 1977, Negative interactions between amino acid and methylamine/ ammonia transport systems of Saccaromyces cerevisiae, J. Biol. Chem. 252:3599.PubMedGoogle Scholar
  130. Saier, M. H., Jr., 1977, Bacterial phosphoenolpyruvate:sugar phosphotransferase systems: Structural, functional, and evolutionary interrelationships, Bacteriol. Rev. 41:856.PubMedGoogle Scholar
  131. Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1970, The physiological behavior of enzyme I and heatstable protein mutants of a bacterial phosphotransferase system, J. Biol. Chem. 245:5870.PubMedGoogle Scholar
  132. Saier, M. H., Jr., Feucht, B. U., and Hofstadter, L. J., 1976, Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzyme II of the phosphoenolypruvate:sugar phosphotransferase system in Escherichia coli, J. Biol. Chem. 251:883.PubMedGoogle Scholar
  133. Scarborough, G. A., 1970, Sugar transport in Neurospora crassa, J. Biol. Chem. 245:1694.PubMedGoogle Scholar
  134. Schimke, R. T., and Bradley, M. O., 1975, Properties of protein turnover in animal cells and a possible role for turnover in “quality” control of proteins, in: Protease and Biological Control (E. Reich, D. B. Rifkin, and E. Shaw, eds.), Vol. 2, pp. 515–530, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  135. Stein, W. D., 1967, in: The Movement of Molecules across Cell Membranes, pp. 52–61, Academic Press, New York.Google Scholar
  136. Steiner, D. F., Kemmler, W., Tager, H. S., Rubenstein, A. H., Lernmark, A., and Zühlke, H., 1975, Proteolytic mechanisms in the biosynthesis of polypeptide hormones, in: Proteases and Biological Control (E. Reich, D. B. Rifkin, and E. Shaw, eds.), Vol. 2, pp. 531–549, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  137. Stephens, J. C., Artz, S. W., and Ames, B. N., 1975, Guanosine-5′-diphosphate-3′-diphosphate (ppGpp): Positive effector for histidine operon transcription and general signal for amino acid deficiency, Proc. Natl. Acad. Sci. U.S.A. 72:4389.PubMedCrossRefGoogle Scholar
  138. Templeton, B. A., and Savageau, M. A., 1974, Transport of biosynthetic intermediates: Regulation of homoserine and threonine uptake in Escherichia coli, J. Bacteriol. 120:114.PubMedGoogle Scholar
  139. Thompson, L. H., Harkins, J. L., and Stanners, C. P., 1973, A mammalian cell mutant with a temperaturesensitive leucyl-transfer RNA synthetase, Proc. Natl. Acad. Sci. U.S.A. 70:3094.PubMedCrossRefGoogle Scholar
  140. Thompson, L. H., Stanners, C. P., and Siminovitch, L., 1975, Selection by (<sup>3</sup>H) amino acids of CHO-cell mutants with altered leucyl- and asparaginyl-transfer RNA synthetases, Som. Cell Genet. 1:187.CrossRefGoogle Scholar
  141. Thompson, L. H., Lofgren, D. J., and Adair, B. M., 1977, CHO cell mutants for arginyl-, asparaginyl-, glutaminyl-, and methionyl-transfer RNA synthetases: Identification and initial characterization, Cell 11:157.PubMedCrossRefGoogle Scholar
  142. Travers, A., 1976a, RNA polymerase specificity and the control of growth, Nature (London) 263:641.CrossRefGoogle Scholar
  143. Travers, A., 1976b, Template selection by E. coli RNA polymerase holoenzyme, FEBS Lett. 69:195.PubMedCrossRefGoogle Scholar
  144. Ullrey, D., Gammon, M. T., and Kalckar, H. M., 1975, Uptake patterns and transport enhancements in cultures of hamster cells deprived of carbohydrates, Arch. Biochem. Biophys. 167:410.PubMedCrossRefGoogle Scholar
  145. Umbarger, H. E., 1973, Genetic and physiological regulation of isoleucine, valine, and leucine formation in the Enterobacteriaceae, in: Genetics of Industrial Organisms (Z. Vanek, Z. Hostalek, and J. Culdin, eds.), pp. 195–218, Academic Publishing House, Prague.Google Scholar
  146. Venuta, S., and Rubin, H., 1973, Sugar transport in normal and Rous-sarcoma virus-transformed chick embryo fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 70:653.PubMedCrossRefGoogle Scholar
  147. Vonder Haar, R. A., and Umbarger, H. E., 1972, Isoleucine and valine metabolism in Escherichia coli. XIX. Inhibition of isoleucine biosynthesis by glycyl-leucine, J. Bacteriol. 112:142.Google Scholar
  148. von Ehrenstein, G., 1970, Transfer RNA and amino acid activation, in: Aspects of Protein Biosynthesis (C. B. Anfinsen, Jr., ed.), Part A, pp. 139–214, Academic Press, New York.Google Scholar
  149. Wasmuth, J. J., and Caskey, C. T., 1976, Selection of temperature-sensitive CHO asparaginyl-tRNA synthetase mutants using the toxic lysine analog, S-2-aminoethyl-L-cysteine, Cell 9:655.PubMedCrossRefGoogle Scholar
  150. Weber, M. J., 1973, Hexose transport in normal and in Rous sarcoma virus-transformed cells, J. Biol. Chem. 248:2978.PubMedGoogle Scholar
  151. Weber, M. J., Hale, A. H., Yau, T. M., Buckman, T., Johnson, M., Brady, T. M., and Larossa, D. D., 1976, Transport changes associated with growth control and malignant transformation, J. Cell. Physiol. 89:711.PubMedCrossRefGoogle Scholar
  152. Wettstein, F. O., and Stent, G., 1968, Physiologically induced changes in the properties of phenylalanine tRNA in Escherichia coli, J. Mol. Biol. 38:25.PubMedCrossRefGoogle Scholar
  153. Whipp, M. J., and Piffard, A. J., 1977, Regulation of aromatic amino acid transport systems in Escherichia coli K-12, J. Bacteriol. 132:453.PubMedGoogle Scholar
  154. Wiley, W. R., and Matchett, N. H., 1966, Tryptophan transport in Neurospora crassa. I. Specificity and kinetics, J. Bacteriol. 92:1698.PubMedGoogle Scholar
  155. Willis, R. C., Iwata, K. K., and Furlong, C. E., 1975, Regulation of glutamine transport in Escherichia coli, J. Bacteriol. 122:1032.PubMedGoogle Scholar
  156. Yamamoto, S., and Lampen, J. O., 1976, The hydrophobic membrane penecillinase of Bacillus lichenformis 749/C. Characterization of the hydrophilic enzyme and phospholipopeptide produced by trypsin cleavage, J. Biol. Chem. 251:4102.PubMedGoogle Scholar
  157. Yegian, C. D., and Stent, G. S., 1969, An unusual condition of leucine transfer RNA appearing during leucine starvation of Escherichia coli, J. Mol. Biol. 39:45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Steven C. Quay
    • 1
  • Dale L. Oxender
    • 2
  1. 1.Department of PathologyHarvard Medical School and Massachusetts General HospitalBostonUSA
  2. 2.Department of Biological ChemistryThe University of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations