Advertisement

Sensing the Environment

Bacterial Chemotaxis
  • Robert M. Macnab
Part of the Biological Regulation and Development book series (BRD, volume 2)

Abstract

Organisms at all levels of complexity are constantly subject to variations in factors impinging on them from the external environment. It is obviously in the interest of the organism to match as closely as possible its activity to these variations. Any mismatch can be remedied by the organism according to one of three general strategies (Fig. 1), namely, (1) modification of the environment, (2) modification of the organism itself, or (3) migration to a more favorable environment.

Keywords

Methylation Level Basal Body Clockwise Rotation Bacterial Chemotaxis Chemotactic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., 1966, Chemotaxis in bacteria, Science 153:708.PubMedCrossRefGoogle Scholar
  2. Adler, J. 1969, Chemoreceptors in bacteria, Science 166:1588.PubMedCrossRefGoogle Scholar
  3. Adler, J. 1975, Chemotaxis in bacteria, Annu. Rev. Biochem. 44:341.PubMedCrossRefGoogle Scholar
  4. Adler, J. 1976, The sensing of chemicals by bacteria, Sci. Am. 234(4):40.PubMedCrossRefGoogle Scholar
  5. Adler, J. and Dahl, M. M., 1967, A method for measuring the motility of bacteria and for comparing random and non-random motility, J. Gen. Microbiol. 46:161.PubMedCrossRefGoogle Scholar
  6. Adler, J. and Epstein, W., 1974, Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 71:2895.PubMedCrossRefGoogle Scholar
  7. Adler, J., and Tso, W-W., 1974, Decision-making in bacteria: Chemotactic response of Escherichia coli to conflicting stimuli, Science 184:1292.PubMedCrossRefGoogle Scholar
  8. Adler, J., Hazelbauer, G. L., and Dahl, M. M., 1973, Chemotaxis toward sugars in Escherichia coli, J. Bacteriol. 115:824.PubMedGoogle Scholar
  9. Allweiss, B., Dostal, J., Carey, K. E., Edwards, T. F., and Freter, R., 1977, The role of chemotaxis in the ecology of bacterial pathogens of mucosal surfaces, Nature (London) 266:448.CrossRefGoogle Scholar
  10. Anderson, R. A., 1975, Formation of the bacterial flagellar bundle, in: Swimming and Flying in Nature (T. Y.-T. Wu, C. J. Brokaw, and C. J. Brennen, eds.), Vol. 1, pp. 45–56, Plenum Press, New York.Google Scholar
  11. Apirion, D., and Watson, N., 1978, Ribonuclease III is involved in motility of Escherichia coli, J. Bacteriol. 133:1543.PubMedGoogle Scholar
  12. Armstrong, J. B., 1972, An S-adenosylmethionine requirement for chemotaxis in Escherichia coli, Can. J. Microbiol. 18:1695.PubMedCrossRefGoogle Scholar
  13. Asakura, S., 1970, Polymerization of flagellin and polymorphism of flagella, Adv. Biophys. 1:99.PubMedGoogle Scholar
  14. Aswad, D. W., and Koshland, D. E., Jr., 1975, Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium, J. Mol. Biol. 97:207.PubMedCrossRefGoogle Scholar
  15. Berg, H. C., 1974, Dynamic properties of bacterial flagellar motors, Nature (London) 249:77.CrossRefGoogle Scholar
  16. Berg, H. C., 1975, Chemotaxis in bacteria, Annu. Rev. Biophys. Bioeng. 4:119.PubMedCrossRefGoogle Scholar
  17. Berg, H. C., 1976, Does the flagellar rotary motor step? in: Cell motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 47–56, Cold Spring Harbor Press, New York.Google Scholar
  18. Berg, H. C., and Anderson, R. A., 1973, Bacteria swim by rotating their flagellar filaments, Nature (London) 245:380.CrossRefGoogle Scholar
  19. Berg, H. C., and Brown, D. A., 1972, Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature (London) 239:500.CrossRefGoogle Scholar
  20. Berg, H. C., and Purcell, E. M., 1977, Physics of chemoreception, Biophys. J. 20:193.PubMedCrossRefGoogle Scholar
  21. Berg, H. C., and Tedesco, P. M., 1975, Transient response to chemotactic stimuli in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72:3235.PubMedCrossRefGoogle Scholar
  22. Bitensky, M. W., and Gorman, R. E., 1973, Cellular responses to cyclic AMP, Prog. Biophys. Mol. Biol. 26:411.CrossRefGoogle Scholar
  23. Boos, W., 1974, The properties of the galactose-binding protein, the possible chemoreceptor for galactose chemotaxis in Escherichia coli, Antibiot. Chemother. 19:21.PubMedGoogle Scholar
  24. Brown, D. A., and Berg, H. C., 1974, Temporal stimulation of chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71:1388.PubMedCrossRefGoogle Scholar
  25. Calladine, C. R., 1976, Design requirements for the construction of bacterial flagella, J. Theor. Biol. 57:469.PubMedCrossRefGoogle Scholar
  26. Calladine, C. R., 1978, Change of waveform in bacterial flagella: The role of mechanics at the M-lecular level, J. Mol. Biol. 118:457.CrossRefGoogle Scholar
  27. Coakley, C. J., and Holwill, M. E. J., 1972, Propulsion of micro-organisms by three-dimensional flagellar waves, J. Theor. Biol. 35:525.PubMedCrossRefGoogle Scholar
  28. Dahlquist, F. W., Lovely, P., and Koshland, D. E., Jr., 1972, Quantitative analysis of bacterial migration in chemotaxis, Nature (London), New Biol. 236:120.CrossRefGoogle Scholar
  29. DeFranco, A. L., Parkinson, J. S., and Koshland, D. E., Jr., 1979, Functional homology of chemotaxis genes in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 139:107.PubMedGoogle Scholar
  30. DePamphilis, M. L., and Adler, J., 1971, Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis, J. Bacteriol. 105:384.PubMedGoogle Scholar
  31. Emerson, S. U., Tokuyasu, K., and Simon, M. I., 1970, Bacterial flagella: Polarity of elongation, Science, 169:190.PubMedCrossRefGoogle Scholar
  32. Godson, G. N., 1978, A comparative DNA-sequence of the G4 and ∅X174 genomes, in: The Single-Stranded DNA Phages (D. T. Denhardt, D. Dressler, and D. S. Ray, eds.) , pp. 671–695, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.Google Scholar
  33. Goy, M. F., Springer, M. S., and Adler, J., 1977, Sensory transduction in Escherichia coli: Role of a protein methylation reaction in sensory adaptation, Proc. Natl. Acad. Sci. U.S.A. 74:4964.PubMedCrossRefGoogle Scholar
  34. Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioenerget. 6:83.Google Scholar
  35. Hazelbauer, G. L., and Parkinson, J. S., 1977, Bacterial chemotaxis, in: Microbial Interactions: Receptors and Recognition, Series B, Vol. 3 (J. L. Reissig, ed.), pp. 60–98, Chapman and Hall, London.Google Scholar
  36. Henrichsen, J., 1972, Bacterial surface translocation: A survey and a classification, Bacteriol. Rev. 36:478.PubMedGoogle Scholar
  37. Hilmen, M., and Simon, M., 1976, Motility and the structure of bacterial flagella, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 35–45, Cold Spring Harbor Press, New York.Google Scholar
  38. Hood, J. M., Fowler, A. V., and Zabin, I., 1978, On the evolution of β-galactosidase, Proc. Natl. Acad. Sci. U.S.A. 75:113.PubMedCrossRefGoogle Scholar
  39. Hotani, H., and Asakura, S., 1974, Growth-saturation in vitro of Salmonella flagella, J. Mol. Biol. 86:285.PubMedCrossRefGoogle Scholar
  40. Iino, T., 1969, Polarity of flagellar growth in Salmonella, J. Gen. Microbiol. 56:227.PubMedCrossRefGoogle Scholar
  41. Iino, T., 1974, Assembly of Salmonella flagellin in vitro and in vivo, J. Supramol. Struct. 2:372.PubMedCrossRefGoogle Scholar
  42. Iino, T., 1977, Genetics of structure and function of bacterial flagella, Annu. Rev. Genet. 11:161.PubMedCrossRefGoogle Scholar
  43. Kamiya, R., and Asakura, S., 1976, Helical transformations of Salmonella flagella in vitro, J. Mol. Biol. 106:167.PubMedCrossRefGoogle Scholar
  44. Khan, S., Macnab, R. M., DeFranco, A. L., and Koshland, D. E., Jr., 1978, The inversion of a behavioral response in bacterial chemotaxis: Explanation at the molecular level, Proc. Natl. Acad. Sci. U.S.A. 75:4150.PubMedCrossRefGoogle Scholar
  45. Kleckner, N., 1977, Translocatable elements in procaryotes, Cell 11:11.PubMedCrossRefGoogle Scholar
  46. Kleene, S. J., Toews, M. L., and Adler, J., 1977, Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis, J. Biol. Chem. 252:3214.PubMedGoogle Scholar
  47. Klug, A., 1967, The design of self-assembling systems of equal units, Symp. Int. Soc. Cell. Biol. 6:1.Google Scholar
  48. Komeda, Y., Suzuki, H., Ishidsu, J., and Iino, T., 1975, The role of cAMP in flagellation of Salmonella typhimurium. Mol. Gen. Genet. 142:289.Google Scholar
  49. Komeda, Y., Silverman, M., and Simon, M., 1977, Genetic analysis of Escherichia coli K-12 region I flagellar mutants, J. Bacteriol. 131:801.PubMedGoogle Scholar
  50. Komeda, Y., Silverman, M., and Simon, M., 1978, Identification of the structural gene for the hook subunit protein of Escherichia coli flagella, J. Bacteriol. 133:364.PubMedGoogle Scholar
  51. Konijn, T. M., 1975, Chemotaxis in the cellular slime moulds, in: Primitive Sensory and Communication Systems (M. J. Carlile, eds.), pp. 101–153, Academic Press, New York.Google Scholar
  52. Kort, E. N., Goy, M. F., Larsen, S. H., and Adler, J., 1975, Methylation of a membrane protein involved in bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 72:3939.PubMedCrossRefGoogle Scholar
  53. Koshland, D. E., Jr., 1977, Sensory response in bacteria, in: Advances in Neurochemistry (B. W. Agranoff and M. H. Aprison, eds.), Vol. 2, pp. 277–341, Plenum Press, New York.CrossRefGoogle Scholar
  54. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W.-W., and Adler, J., 1974a, Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli, Nature (London) 249:74.CrossRefGoogle Scholar
  55. Larsen, S. H., Adler, J., Gargus, J. J., and Hogg, R. W., 1974b, Chemomechanical coupling without ATP: The source of energy for motility and chemotaxis in bacteria, Proc. Natl. Acad. Sci. U.S.A. 71:1239.PubMedCrossRefGoogle Scholar
  56. Läuger, P., 1977, Ion transport and rotation of bacterial flagella, Nature (London) 268:360.CrossRefGoogle Scholar
  57. Lengeler, J., 1975, Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: Isolation and mapping, J. Bacteriol. 124:26.PubMedGoogle Scholar
  58. Macnab, R. M., 1977, Bacterial flagella rotating in bundles: A study in helical geometry, Proc. Natl. Acad. Sci. U.S.A. 74:221.PubMedCrossRefGoogle Scholar
  59. Macnab, R. M., 1978a, Bacterial flagella, in: Encyclopedia of Plant Physiology, New Series (W. Haupt and M. E. Feinleib, eds.), Vol, 7, pp. 207–223, Springer-Verlag, Heidelberg.Google Scholar
  60. Macnab, R. M., 1978b, Chemotaxis in bacteria, in: Encyclopedia of Plant Physiology, New Series (W. Haupt and M. E. Feinleib, eds.), Vol, 7, pp. 310–334, Springer-Verlag, Heidelberg.Google Scholar
  61. Macnab, R. M., 1978c, Bacterial motility and chemotaxis: The molecular biology of a behavioral system, Grit. Rev. Biochem. 5:291.CrossRefGoogle Scholar
  62. Macnab, R. M., and Koshland, D. E., Jr., 1972, The gradient-sensing mechanism in bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 69:2509.PubMedCrossRefGoogle Scholar
  63. Macnab, R. M., and Koshland, D. E., Jr., 1973, Persistence as a concept in the motility of chemotactic bacteria, J. Mechanochem. Cell Motility 2:141.Google Scholar
  64. Macnab, R. M., and Ornston, M. K., 1977, Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force, J. Mol. Biol. 112:1.PubMedCrossRefGoogle Scholar
  65. Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., and van der Drift, C., 1977, A protonmotive force drives bacterial flagella, Proc. Natl. Acad. Sci. U.S.A. 74:3060.PubMedCrossRefGoogle Scholar
  66. Matsuura, S., Shioi, J., and Imae, Y., 1977, Motility in Bacillus subtilis driven by an artificial protonmotive force, FEBS Lett. 82:187.CrossRefGoogle Scholar
  67. Mesibov, R., and Adler, J., 1972, Chemotaxis toward amino acids in Escherichia coli, J. Bacteriol. 112:315.PubMedGoogle Scholar
  68. Miller, J. B., and Koshland, D. E., Jr., 1977, Sensory electrophysiology of bacteria: Relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis, Proc. Natl. Acad. Sci. U.S.A. 74:4752.PubMedCrossRefGoogle Scholar
  69. Nishimura, A., Suzuki, H., and Hirota, Y., 1975, Flagellar formation in E. coli is coupled with cell division in regulatory mechanism, Jpn. J. Hum. Genet. 50:484.Google Scholar
  70. O’Brien, E. J., and Bennett, P. M., 1972, Structure of straight flagella from a mutant Salmonella, J. Mol. Biol. 70:133.PubMedCrossRefGoogle Scholar
  71. Ordal, G. W., 1977, Calcium ion regulates chemotactic behaviour in bacteria, Nature (London) 270:66.CrossRefGoogle Scholar
  72. Ordal, G. W., and Adler, J., 1974, Properties of mutants in galactose taxis and transport, J. Bacteriol. 117:517.PubMedGoogle Scholar
  73. Ordal, G. W., and Fields, R. B., 1977, A biochemical mechanism for bacterial chemotaxis, J. Theoret. Biol. 68:491.CrossRefGoogle Scholar
  74. Parkinson, J. S., 1977, Behavioral genetics in bacteria, Annu. Rev. Genet. 11:397.PubMedCrossRefGoogle Scholar
  75. Parkinson, J. S., 1978, Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis, J. Bacteriol. 135:45.PubMedGoogle Scholar
  76. Ridgway, H. F., Silverman, M., and Simon, M. I., 1977, Localization of proteins controlling motility and chemotaxis in Escherichia coli, J. Bacteriol. 132:657.PubMedGoogle Scholar
  77. Rubik, B. A., and Koshland, D. E., Jr., 1978, Potentiation, desensitization, and inversion of response in bacterial sensing of chemical stimuli, Proc. Natl. Acad. Sci. U.S.A. 75:2820.PubMedCrossRefGoogle Scholar
  78. Schwartz, M., Kellermann, O., Szelcman, S., and Hazelbauer, G. L., 1976, Further studies of the binding of maltose to the maltose-binding protein of Escherichia coli, Eur. J. Biochem. 71:167.PubMedCrossRefGoogle Scholar
  79. Seabrook, W. D., 1978, Neurobiological contributions to understanding insect pheromone systems, Annu. Rev. Entomol. 23:471.CrossRefGoogle Scholar
  80. Seymour, F. W. K., and Doetsch, R. N., 1973, Chemotactic responses by motile bacteria, J. Gen. Microbiol. 78:287.PubMedCrossRefGoogle Scholar
  81. Shapiro, L., 1976, Differentiation in the Caulobacter cell cycle, Annu. Rev. Microbiol. 30:377.PubMedCrossRefGoogle Scholar
  82. Silverman, M. R., and Simon, M. I., 1972, Flagellar assembly mutants in Escherichia coli, J. Bacteriol. 112:986.PubMedGoogle Scholar
  83. Silverman, M., and Simon, M., 1973, Genetic analysis of bacteriophage Mu-induced flagellar mutants in Escherichia coli, J. Bacteriol. 116:114.PubMedGoogle Scholar
  84. Silverman, M., and Simon, M., 1974a, Characterization of Escherichia coli flagellar mutants that are insensitive to catabolite repression, J. Bacteriol. 120:1196.PubMedGoogle Scholar
  85. Silverman, M., and Simon, M., 1974b, Flagellar rotation and the mechanism of bacterial motility, Nature (London) 249:73.CrossRefGoogle Scholar
  86. Silverman, M., and Simon, M., 1976, Operon controlling motility and chemotaxis in E. coli, Nature (London) 264:577.CrossRefGoogle Scholar
  87. Silverman, M., and Simon, M., 1977a, Bacterial flagella, Annu. Rev. Microbiol. 31:397.PubMedCrossRefGoogle Scholar
  88. Silverman, M., and Simon, M., 1977 b, Chemotaxis in Escherichia coli: Methylation of che gene products, Proc. Natl. Acad. Sci. U.S.A. 74:3317.PubMedCrossRefGoogle Scholar
  89. Silverman, M., and Simon, M., 1977c, Identification of polypeptides necessary for chemotaxis in Escherichia coli, J. Bacteriol. 130:1317.PubMedGoogle Scholar
  90. Springer, M. S., Goy, M. F., and Adler, J., 1977, Sensory transduction in Escherichia coli: Two complementary pathways of information processing that involve methylated proteins, Proc. Natl. Acad. Sci. U.S.A. 74:3312.PubMedCrossRefGoogle Scholar
  91. Springer, W. R., and Koshland, D. E., Jr., 1977, Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system, Proc. Natl. Acad. Sci. U.S.A. 74:533.PubMedCrossRefGoogle Scholar
  92. Spudich, J. L., and Koshland, D. E., Jr., 1975, Quantitation of the sensory response in bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 72:710.PubMedCrossRefGoogle Scholar
  93. Stock, J. B., and Koshland, D. E., Jr., 1978, The identification of a protein demethylase in bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 75:3659.PubMedCrossRefGoogle Scholar
  94. Stocker, B. A. D., 1949, Measurements of rate of mutation of flagellar antigenic phase in Salmonella typhimurium, J. Hyg. 47:398.PubMedCrossRefGoogle Scholar
  95. Strange, P. G., and Koshland, D. E., Jr., 1976, Receptor interactions in a signalling system: Competition between ribose receptor and galactose receptor in the chemotaxis response, Proc. Natl. Acad. Sci. U.S.A. 73:762.PubMedCrossRefGoogle Scholar
  96. Suzuki, H., and Iino, T., 1975, Absence of messenger ribonucleic acid specific for flagellin in non-flagellate mutants of Salmonella, J. Mol. Biol. 95:549.PubMedCrossRefGoogle Scholar
  97. Suzuki, T., Iino, T., Horiguchi, T., and Yamaguchi, S., 1978, Incomplete flagellar structures in nonflagellate mutants of Salmonella typhimurium, J. Bacteriol. 133:904.PubMedGoogle Scholar
  98. Szmelcman, S., and Adler, J., 1976, Change in membrane potential during bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 73:4387.PubMedCrossRefGoogle Scholar
  99. Taylor, B. L., and Koshland, D. E., Jr., 1974, Reversal of flagellar rotation in monotrichous and peritrichous bacteria: Generation of changes in direction, J. Bacteriol. 119:640.PubMedGoogle Scholar
  100. Taylor, B. L., and Koshland, D. E., Jr., 1975, Intrinsic and extrinsic light responses of Salmonella typhimurium and Escherichia coli, J. Bacteriol. 123:557.PubMedGoogle Scholar
  101. Tsang, N., Macnab, R., and Koshland, D. E., Jr., 1973, Common mechanism for repellents and attractants in bacterial chemotaxis, Science 181:60.PubMedCrossRefGoogle Scholar
  102. Tso, W.-W., and Adler, J., 1974, Negative chemotaxis in Escherichia coli, J. Bacteriol. 118:560.PubMedGoogle Scholar
  103. Van der Werf, P., and Koshland, D. E., Jr., 1977, Identification of a 7-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis, J. Biol. Chem. 252:2793.Google Scholar
  104. Ward, S., 1973, Chemotaxis by the nematode Caenorhabditis elegans: Identification of attractants and analysis of the response by use of mutants, Proc. Natl. Acad. Sci. U.S.A. 70:817.PubMedCrossRefGoogle Scholar
  105. Yokota, T., and Gots, J. S., 1970, Requirement of adenosine 3′,5′-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 103:513.PubMedGoogle Scholar
  106. Zieg, J., Silverman, M., Hilman, M., and Simon, M., 1977, Recombinational switch for gene expression, Science 196:170.PubMedCrossRefGoogle Scholar
  107. Zigmond, S. H., and Hirsch, J. G., 1973, Leukocyte locomotion and chemotaxis, J. Exp. Med. 137:387.PubMedCrossRefGoogle Scholar
  108. Zukin, R. S., Hartig, P. R., and Koshland, D. E., Jr., 1977a, Use of a distant reporter group as evidence for a conformational change in a sensory receptor, Proc. Natl. Acad. Sci. U.S.A. 74:1932.PubMedCrossRefGoogle Scholar
  109. Zukin, R. S., Strange, P. G., Heavey, L. R., and Koshland, D. E., Jr., 1977b, Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli, Biochemistry 16:381.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Robert M. Macnab
    • 1
  1. 1.Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUSA

Personalised recommendations