Protein Folding

Evolutionary, Structural, and Chemical Aspects
  • Kenneth A. Thomas
  • Alan N. Schechter
Part of the Biological Regulation and Development book series (BRD, volume 2)


Proteins are used by organisms for structural, catalytic, and regulatory purposes. These functions require that the polypeptide chains fold into rather specific three-dimensional conformations, which are determined by both the sequential order of amino acids in the polypeptide chain and the chemical environment of the molecule. Under normal biological conditions proteins attain conformations compatible with functional efficiency. This results in the proper and relatively stable juxtaposition of certain amino acid residues that are necessary for the specific biological role of the protein.


Polypeptide Chain Globular Protein Triose Phosphate Isomerase Bovine Pancreatic Trypsin Inhibitor Polypeptide Backbone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, A. S., and Taniuchi, H., 1977, Formation of the four isomers of hen egg white lysozyme containing three native disulfide bonds and one open disulfide bond, Proc. Natl. Acad. Sci. U.S.A. 74:2362.PubMedGoogle Scholar
  2. Adams, M. J., Liljas, A., and Rossmann, M. G., 1973, Functional anion binding sites in dogfish M4 lactate dehydrogenase, J. Mol. Biol. 76:519.PubMedGoogle Scholar
  3. Adman, E. T., Sieker, L. C., and Jensen, L. H., 1973, The structure of a bacterial ferredoxin, J. Biol. Chem. 248:3987.PubMedGoogle Scholar
  4. Alff-Steinberger, C., 1969, The genetic code and error transmission, Proc. Natl. Acad. Sci. U.S.A. 64:584.PubMedGoogle Scholar
  5. Allerhand, A., Doddrell, D., Glushko, V., Cochran, D., Wenkert, E., Lawson, P., and Gurd, F., 1971, Conformation and segmental motion of native and denatured ribonuclease A in solution: Application of natural abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance, J. Am. Chem. Soc. 93:544.PubMedGoogle Scholar
  6. Anderson, L., 1973, Intermediate structure of normal human haemoglobin: Methaemoglobin in the deoxy quaternary conformation, J. Mol. Biol. 79:495.PubMedGoogle Scholar
  7. Anderson, L., 1975, Structures of deoxy and carbonmonoxy haemoglobin Kansas in the deoxy quaternary structure, J. Mol. Biol. 94:33.PubMedGoogle Scholar
  8. Anderson, W. F., and Steitz, T. A., 1975, Structure of yeast hexokinase. IV. Low-resolution structure of enzyme-substrate complexes revealing negative co-operativity and allosteric interactions, J. Mol. Biol. 92:279.PubMedGoogle Scholar
  9. Anderson, W. L., and Wetlaufer, D. B., 1976, The folding of reduced lysozyme, J. Biol. Chem. 251:3147.PubMedGoogle Scholar
  10. Andria, G., Taniuchi, H., and Cone, J. L., 1971, The specific binding of three fragments of staphylococcal nuclease, J. Biol. Chem. 246:7421.PubMedGoogle Scholar
  11. Anfinsen, C. B., 1973, Principles that govern the folding of protein chains, Science 181:223.PubMedGoogle Scholar
  12. Anfinsen, C. B., and Haber, E., 1961, Studies on the reduction and reformation of protein disulfide bonds, J. Biol. Chem. 236:1361.PubMedGoogle Scholar
  13. Anfinsen, C. B., and Scheraga, H. A., 1975, Experimental and theoretical aspects of protein folding, Ado. Protein Chem. 29:205–300.Google Scholar
  14. Anfinsen, C. B., Cuatrecasas, P., and Taniuchi, H., 1971a, Staphylococcal nuclease, chemical properties and catalysis, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 4, pp. 177–204, Academic Press, New York.Google Scholar
  15. Anfinsen, C. B., Schechter, A. N., and Tanuichi, H., 1971 b, Some aspects of the structure of staphylococcal nuclease: Part II. Studies in solution, Cold Spring Harbor Symp. Quant. Biol. 36:249.Google Scholar
  16. Arnone, A., 1972, X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin, Nature (London) 237:146.Google Scholar
  17. Arnone, A., and Perutz, M. F., 1974, Structure of inositol hexaphosphate-human deoxyhaemoglobin complex, Nature (London) 249:34.Google Scholar
  18. Arnone, A., Bier, C. J., Cotton, F. A., Day, V. W., Hazen, E. E., Richardson, D. C., Richardson, J. S., and Yonath, A., 1971, A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus, J. Biol. Chem. 246:2302.PubMedGoogle Scholar
  19. Baldwin, R. L., 1975, Intermediates in protein folding reactions and the mechanism of protein folding, Annu. Rev. Biochem. 44:453.PubMedGoogle Scholar
  20. Baldwin, R. L., 1978, The pathway of protein folding, Trends Biochem. Sci. 3:66.Google Scholar
  21. Banaszak, L. J., and Bradshaw, R. A., 1975, Malate dehydrogenases, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 11, pp. 369–396, Academic Press, New York.Google Scholar
  22. Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pogson, C. I., Wilson, I. A., Corran, P. H., Furth, A. J., Milman, J. O., Offord, R. E., Priddle, J. D., and Waley, S. G., 1975, Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 A resolution using amino acid sequence data, Nature (London) 255:609.Google Scholar
  23. Banyard, S. H., Blake, C. C. F., and Swan, I. D. A., 1974, The high resolution X-ray study of human lysozyme: A preliminary analysis, in: Lysozyme (E. F. Osserman, R. E. Canfield, and S. Beychok, eds.), pp. 71–79, Academic Press, New York.Google Scholar
  24. Banyard, S. H., Stammers, D. K., and Harrison, P. M., 1978, Electron density map of apoferritin at 2.8 A resolution, Nature (London) 271:282.Google Scholar
  25. Bedarker, S., Turnell, W. G., Blundell, T. L., and Schwabe, C., 1977, Relaxin has conformational homology with insulin, Nature (London) 270:449.Google Scholar
  26. Bentley, G., Dodson, E., Dodson, G., Hodgkin, D., and Mercola, D., 1976, Structure of insulin in 4-zinc insulin, Nature (London) 261:166.Google Scholar
  27. Biesecker, G., Harris, J. I., Thierry, J. C., Walker, J. E., and Wonacott, A. J., 1977, Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus, Nature (London) 266:328.Google Scholar
  28. Birktoft, J. J., and Blow, D. M., 1972, Structure of crystalline α-chymotrypsin. V. The atomic structure of tosyl-a-chymotrypsin at 2 A resolution, J. Mol. Biol. 68:187.PubMedGoogle Scholar
  29. Birktoft, J. J., Kraut, J., and Freer, S. T., 1976, A detailed structural comparison between the charge relay system in chymotrypsinogen and in a-chymotrypsin, Biochemistry 15:4481.PubMedGoogle Scholar
  30. Bjork, I., Karlsson, F. A., and Berggard, I., 1971, Independent folding of the variable and constant halves of a lamda immunoglobulin light chain, Proc. Natl. Acad. Sci. U.S.A. 68:1707.PubMedGoogle Scholar
  31. Blake, C. C. F., and Evans, P. R., 1974, Structure of horse muscle phosphoglycerate kinase, J. Mol. Biol. 84:585.PubMedGoogle Scholar
  32. Blake, C. C. F., Geisow, M. J., Swan, I. D. A., Rerat, C., and Rerat, B., 1974, Structure of human plasma prealbumin at 2.5 A resolution, J. Mol. Biol. 88:1.PubMedGoogle Scholar
  33. Blout, E. R., Doty, P., and Yang, J. T., 1957, Polypeptides. XII. The optical rotation and configuration stability of a-helices, J. Am. Chem. Soc. 79:749.Google Scholar
  34. Blow, D. M., 1971, The structure of chymotrypsin, in: The Enzymes (P. D. Boyer, Ed.), 3rd ed., Vol. 3, pp. 185–212, Academic Press, New York.Google Scholar
  35. Blundell, T. L., and Johnson, L. N., 1976, Protein Crystallography, pp. 18–58, Academic Press, New York.Google Scholar
  36. Blundell, T., Dodson, G., Hodgkin, D., and Mercola, D., 1972, Insulin: The structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem. 26:279–402.Google Scholar
  37. Bode, W., and Schwager, P., 1975, The refined crystal structure of bovine--trypsin at 1.8 Å resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0, J. Mol. Biol. 98:693.PubMedGoogle Scholar
  38. Bonner, W. A., Van Dort, M. A., and Yearian, M. R., 1975, Asymmetric degradation of DL-leucine with longitudinally polarised electrons, Nature (London) 258:419.Google Scholar
  39. Bradshaw, R. A., Kanarek, L., and Hill, R. L., 1967, The preparation, properties, and reactivation of the mixed disulfide derivative of egg white lysozyme and L-cystine, J. Biol. Chem. 242:3789.PubMedGoogle Scholar
  40. Brandts, J. F., Halvorson, H. R., and Brennan, M., 1975, Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues, Biochemistry 14:4953.PubMedGoogle Scholar
  41. Brandts, J. F., Brennan, M., and Lin, L.-N., 1977, Unfolding and refolding occur much faster for a prolinefree protein than for most proline-containing proteins, Proc. Natl. Acad. Sci. U.S.A. 74:4178.PubMedGoogle Scholar
  42. Brown, J. E., and Klee, W. A., 1969, Conformational studies of a series of overlapping peptides from ribonuclease and their relationship to the protein structure, Biochemistry 8:2876.PubMedGoogle Scholar
  43. Browne, W. J., North, A. C. T., Phillips, D. C., Brew, K., Vanaman, T. C., and Hill, R. L., 1969, A possible three-dimensional structure of bovine a-lactalbumin based on that of hen’s egg-white lysozyme, J. Mol. Biol. 42:65.PubMedGoogle Scholar
  44. Buehner, M., Ford, G. C., Moras, D., Olsen, K. W., and Rossmann, M. G., 1974, Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase, J. Mol. Biol. 90:25.PubMedGoogle Scholar
  45. Burnett, R. M., Darling, G. D., Kendall, D. S., LeQuesne, M. E., Mayhew, S. G., Smith, W. W., and Ludwig, M. L., 1974, The structure of the oxidized form of clostridial flavodoxin at 1.9 A resolution, J. Biol. Chem. 249:4383.PubMedGoogle Scholar
  46. Campbell, I. D., Dobson, C. M., and Williams, R. J. P., 1975, Proton magnetic resonance studies of the tyrosine residues of hen lysozyme-assignment and detection of conformational mobility, Proc. R. Soc. London, Ser. B 189:503.Google Scholar
  47. Campbell, J. W., Watson, H. C., and Hodgson, G. I., 1974, Structure of yeast phosphoglycerate mutase, Nature (London) 250:301.Google Scholar
  48. Carter, C. W., Jr., Kraut, J., Freer, S. T., Xuong, N., Alden, R. A., and Bartsch, R. G., 1974, Two-angstrom crystal structure of oxidized chromatium high potential iron protein, J. Biol. Chem. 249:4212.PubMedGoogle Scholar
  49. Chavez, L. G., and Scheraga, H. A., 1979, Location of the antigenic determinants of bovine pancreatic ribonuclease, Biochemistry 18:4386.PubMedGoogle Scholar
  50. Chothia, C., 1973, Conformation of twisted β-pleated sheets in proteins, J. Mol. Biol. 75:295.PubMedGoogle Scholar
  51. Chothia, C., 1974, Hydrophobic bonding and accessible surface areas in proteins, Nature (London) 248:338.Google Scholar
  52. Chothia, C., 1975, Structural invariants in protein folding, Nature (London) 254:304.Google Scholar
  53. Chothia, C., 1976, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 105:1.PubMedGoogle Scholar
  54. Chothia, C., and Janin, J., 1975, Principles of protein-protein recognition, Nature (London) 256:705.Google Scholar
  55. Chou, P. Y., and Fasman, G. D., 1974a, Conformational parameters for amino acids in helical, -sheet, and random coil regions calculated from proteins, Biochemistry 13:211.PubMedGoogle Scholar
  56. Chou, P. Y., and Fasman, G. D., 1974b, Prediction of protein conformation, Biochemistry 13:222.PubMedGoogle Scholar
  57. Chou, P. Y., and Fasman, G. D., 1978, Empirical predictions of protein conformation, Annu. Rev. Biochem.47:251.PubMedGoogle Scholar
  58. Colman, P. M., Jansonius, J. N., and Matthews, B. W., 1972, The structure of thermolysin: An electron density map at 2.3 A resolution, J. Mol. Biol. 70:701.PubMedGoogle Scholar
  59. Cowan, P. M.. and McGavin, S., 1955, Structure of poly-L-proline, Nature (London) 176:501.Google Scholar
  60. Crawford, J. L., Lipscomb, W. N., and Schellman, C. G., 1973, The reverse turn as a polypeptide conformation in globular proteins, Proc. Natl. Acad. Sci. U.S.A. 70:538.PubMedGoogle Scholar
  61. Creighton, T. E., 1977a, Conformational restrictions on the pathway of folding and unfolding of the pancreatic trvpsin inhibitor, J. Mol. Biol. 113:275.PubMedGoogle Scholar
  62. Creighton, T. E., 1977 b, Kinetics of refolding of reduced ribonuclease, J. Mol. Biol. 113:329.PubMedGoogle Scholar
  63. Creighton, T. E., 1978, Experimental studies of protein folding and unfolding, Prog. Biophys. Mol. Biol. 33:231.PubMedGoogle Scholar
  64. Crestfield, A. M., and Fruchter, R. G., 1967, The homologous and hybrid dimers of ribonuclease A and its carboxymethylhistidine derivatives, J. Biol. Chem. 242:3279.PubMedGoogle Scholar
  65. Davies, D. R., Padlan, E. A., and Segel, D. M., 1975, Three-dimensional structure of immunoglobulins, Annu. Rev. Biochem. 44:639.PubMedGoogle Scholar
  66. Dayhoff, M. O., Hunt, L. T., McLaughlin, P. J., and Jones, D. D., 1972, Gene duplications in evolution: The globins, in: Atlas of Protein Sequences and Structure (M. O. Dayhoff, ed.), Vol. 5, pp. 17–30, The National Biomedical Research Foundation, Silver Spring, Maryland.Google Scholar
  67. Deatherage, J. F., Loe, R. S., Anderson, C. M., and Moffat, K., 1976, Structure of cyanide methaemoglobin, J. Mol. Biol. 104:687.PubMedGoogle Scholar
  68. Deisenhofer, J., and Steigemann, W., 1975, Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor of 1.5 A resolution, Acta Cryst. B31:238.Google Scholar
  69. Deisenhofer, J., Colman, P. M., Huber, R., Haupt, H., and Schwick, G., 1976, Crystallographic structural studies of a human Fc-fragment. I. An electron-density map at 4 A resolution and a partial model, Hoppe Seyler’s Z. Physiol. Chem. 357:435.PubMedGoogle Scholar
  70. Delbaere, L. T. J., Hutcheon, W. L. B., James, M. N. G., and Thiessen, W. E., 1975, Tertiary structure differences between microbial and pancreatic serine enzymes, Nature (London) 257:758.Google Scholar
  71. Dickerson, R. E., 1971, Sequence and structure homologies in bacterial and mammalian-type cytochromes, J. Mol. Biol. 57:1.PubMedGoogle Scholar
  72. Dickerson, R. E., and Geis, I., 1969, The Structure and Action of Proteins, pp. 24–34, W. A. Benjamin, Menlo Park, California.Google Scholar
  73. Dickerson, R. E., and Timkovich, R., 1975, Cytochromes c, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 11, pp. 397–547, Academic Press, New York.Google Scholar
  74. Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E., 1971, Ferricytochromec, J. Biol. Chem. 246:1511.PubMedGoogle Scholar
  75. Dickerson, R. E., Timkovitch, R., and Almassy, R. J., 1976, The cytochrome fold and the evolution of bacterial energy metabolism, J. Mol. Biol. 100:473.PubMedGoogle Scholar
  76. Drenth, J., Jansonius, J. N., Koekoek, R., and Wolthers, B. G., 1971, The structure of papain, Adv. Protein Chem. 25:79–115.PubMedGoogle Scholar
  77. Eklund, H., Nordström, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B., Tapia, O., and Brändén, C., 1976a, Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 A resolution, J. Mol. Biol. 102:27.PubMedGoogle Scholar
  78. Eklund, H. C., Brändén, C., and Jörnvall, H., 1976b, Structural comparisons of mammalian, yeast and bacillar alcohol dehydrogenases, J. Mol. Biol. 102:61.PubMedGoogle Scholar
  79. Epp, O., Lattman, E. E., Schiffer, M., Huber, R., and Palm, W., 1975, The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0 A resolution, Biochemistry 14:4943.PubMedGoogle Scholar
  80. Epstein, C. J., Goldberger, R. F., and Anfinsen, C. B., 1963, Genetic control of tertiary protein structure: Studies with model systems, Cold Spring Harbor Symp. Quant. Biol. 28:439.Google Scholar
  81. Epstein, H. F., Schechter, A. N., Chen, R. F., and Anfinsen, C. B., 1971a, The folding of staphylococcal nuclease: Kinetic studies on two processes in acid renaturation, J. Mol. Biol. 60:499.PubMedGoogle Scholar
  82. Epstein, H. F., Schechter, A. N., and Cohen, J. S., 1971 b, Folding of staphylococcal nuclease: Magnetic resonance and fluorescence studies of individual residues, Proc. Natl. Acad. Sci. U.S.A. 68:2042.PubMedGoogle Scholar
  83. Evans, D. R., Warren, S. G., Edwards, B. F. P., McMurray, C. H., Bethge, P. H., Wiley, D. C., and Lipscomb, W. N., 1973, Aqueous central cavity in aspartate transcarbamylase from E. coll. Science 179:683.PubMedGoogle Scholar
  84. Fehlhammer, H., Bode, W., and Huber, R., 1977, Crystal structure of bovine trypsinogen at 1.8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin, J. Mol. Biol. 111:415.PubMedGoogle Scholar
  85. Fenna, R. E., and Matthews, B. W., 1975, Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola, Nature (London) 258:573.Google Scholar
  86. Fermi, G., 1975, Three-dimensional Fourier synthesis of human deoxyhaemoglobin at 2.5 A resolution: Refinement of the atomic model, J. Mol. Biol. 97:237.PubMedGoogle Scholar
  87. Finney, J. L., 1978, Volume occupation, environment and accessibility in proteins. Environment and molecular area of RNase-S, J. Mol. Biol. 119:415.PubMedGoogle Scholar
  88. Fitch, W. M., and Markowitz, E., 1970, An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution, Biochem. Genet. 4:579.PubMedGoogle Scholar
  89. Fletterick, R. J., Bates, D. J., and Steitz, T. A., 1975, The structure of a yeast hexokinase monomer and its complexes with substrates at 2.7 A resolution, Proc. Natl. Acad. Sci. U.S.A. 72:38.PubMedGoogle Scholar
  90. Fletterick, R. J., Sygusch, J., Semple, H., and Madsen, N. B., 1976, Structure of glycogen phosphorylase a at 3.0 A resolution and its ligand binding sites at 6 A, J. Biol. Chem. 251:6142.PubMedGoogle Scholar
  91. Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York.Google Scholar
  92. Freedman, R. B., and Hawkins, H. C., 1978, Enzyme-catalyzed disulfide interchange and protein biosynthesis, Biochem. Soc. Trans. 5:348.Google Scholar
  93. Frier, J. A., and Perutz, M. F., 1977, Structure of human foetal deoxyhaemoglobin, J. Mol. Biol. 112:97.PubMedGoogle Scholar
  94. Furie, B., Schechter, A. N., Sachs, D. H., and Anfinsen, B., 1973, An immunological approach to the conformational equilibrium of staphylococcal nuclease, J. Mol. Biol. 92:497.Google Scholar
  95. Furie, B., Sachs, D. H., Schechter, A. N., and Anfinsen, C. B., 1974, Antibodies to the unfolded form of a helix-rich region of staphylococcal nuclease, Biochemistry 13:1561.PubMedGoogle Scholar
  96. Garel, J.-R., 1978, Early steps in the refolding of reduced ribonuclease A, J. Mol. Biol. 118:331.PubMedGoogle Scholar
  97. Ginsburg, A., and Carroll, W. R., 1965, Some specific ion effects on the conformation and thermal stability of ribonuclease, Biochemistry 4:2159.Google Scholar
  98. Givol, D., DeLorenzo, F., Goldberger, R. F., and Anfinsen, C. B., 1965, Disulfide interchange and the threedimensional structure of proteins, Proc. Natl. Acad. Sci. U.S.A. 53:676.PubMedGoogle Scholar
  99. Goldberger, R. F., Epstein, C. J., and Anfinsen, C. B., 1963, Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver, J. Biol. Chem. 238:628.PubMedGoogle Scholar
  100. Gurd, F., and Rothgeb, T. M., 1979, Motions in proteins, Adv. Protein Chem. 33:74.Google Scholar
  101. Hagler, A. T., and Honig, B., 1978, On the formation of protein tertiary structure on a computer, Proc. Natl. Acad. Sci. U.S.A. 75:554.PubMedGoogle Scholar
  102. Hagler, A. T., and Moult, J., 1978, Computer simulation of the solvent structure around biological macromolecules, Nature (London) 272:222.Google Scholar
  103. Hantgan, R. R., Hammes, G. G., and Scheraga, H. A., 1974, Pathways of folding of reduced bovine pancreatic ribonuclease, Biochemistry 13:3421.PubMedGoogle Scholar
  104. Hartley, B. S., and Shotton, D. M., 1971, Pancreatic elastase, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 3, pp. 323–373, Academic Press, New York.Google Scholar
  105. Hartsuck, J. A., and Lipscomb, W. N., 1971, Carboxypeptidase A, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 3, pp. 1–56, Academic Press, New York.Google Scholar
  106. Hendrickson, W. A., and Love, W. E., 1971, Structure of lamprey haemoglobin, Nature (London), New Biol. 232:197.Google Scholar
  107. Hermans, J., 1966, The effects of protein denaturants on the stability of the a helix, J. Am. Chem. Soc. 88:2418.Google Scholar
  108. Hill, R. L., Delaney, R., Fellows, R. E., Jr., and Lebovitz, H. E., 1966, The evolutionary origins of the immunoglobulins, Proc. Natl. Acad. Sci. U.S.A. 56:1763.Google Scholar
  109. Hill, E., Tsernoglou, D., Webb, L., and Banaszak, L. J., 1972, Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0 A resolution, J. Mol. Biol. 72:577.PubMedGoogle Scholar
  110. Holbrook, J. J., Liljas, A., Steindel, S. J., and Rossmann, M. G., 1975, Lactate dehydrogenase, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol 11, pp. 191–292, Academic Press, New York.Google Scholar
  111. Huber, R., and Steigemann, W., 1974, Two cis-prolines in the Bence-Jones protein REI and the cis-pro-bend, Fed. Eur. Biochem. Soc. Lett. 48:235.Google Scholar
  112. Huber, R., Epp, O., Steigemann, W., and Formanek, H., 1971, The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin, Eur. J. Biochem. 19:42.PubMedGoogle Scholar
  113. Huber, R., Kukla, D., Bode, W., Schwager, P., Bartels, K., Deisenhofer, J., and Steigemann, W., 1974, Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution, J. Mol. Biol. 89:73.PubMedGoogle Scholar
  114. Huber, R., Bode, W., Kukla, D., Kohl, U., and Ryan, C. A., 1975, The structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. III. Structure of the anhydro-trypsin-inhibitor complex, Biophys. Struct. Mech. 1:189.PubMedGoogle Scholar
  115. Huber, R., Deisenhofer, J., Colman, P. M., Matsunhima, M., and Palm, W., 1976, Crystallographic structure studies of an IgG molecule and an Fc fragment, Nature (London) 264:415.Google Scholar
  116. Hurrell, J. G. R., Smith, J. H., and Leach, S. J., 1977, Immunological measurements of conformational motility in regions of the myoglobin molecules, Biochemistry 16:175.PubMedGoogle Scholar
  117. Ikai, H., Fish, W. W., and Tanford, C., 1973, Kinetics of unfolding and refolding of proteins: II. Results for cytochrome c, J. Mol. Biol. 73:165.PubMedGoogle Scholar
  118. Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C., and Rupley, J. A., 1972, Vertebrate lysozymes, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 7, pp. 665–868, Academic Press, New York.Google Scholar
  119. IUPAC-IUB Commission on Biochemical Nomenclature, 1970, Abbreviations and symbols for the description of the conformation of polypeptide chains, J. Biol. Chem. 245:6489.Google Scholar
  120. Janin, J., and Chothia, C., 1976, Stability and specificity of protein-protein interactions: The case of the trypsin-trypsin inhibitor complexes, J. Mol. Biol. 100:197.PubMedGoogle Scholar
  121. Jardetzky, O., Thielmann, H., Arata, Y., Markley, J. L., and Williams, M. N., 1971, Tentative sequential model for the unfolding and refolding of staphylococcal nuclease at high pH, Cold Spring Harbor Symp. Quant. Biol. 36:257.Google Scholar
  122. Johanin, G., and Kellershohn, N., 1972, An estimate of intraproteic electrostatic field values originated by the peptide groups in a-chymotrypsin, Biochem. Biophys. Res. Commun. 49:321.Google Scholar
  123. Kabat, E. A., Padlan, E. A., and Davies, D. R., 1975, Evolutionary and structural influences on light chain constant (CL) region of human and mouse immunoglobulins, Proc. Natl. Acad. Sci. U.S.A. 72:2785.PubMedGoogle Scholar
  124. Karplus, M., and Weaver, D. C., 1976, Protein folding dynamics, Nature (London) 260:404.Google Scholar
  125. Kauzmann, W., 1959, Some factors in the interpretation of protein denaturation, Adv. Protein Chem. 14:1–63.PubMedGoogle Scholar
  126. Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C., and Shore, U. C., 1960, Structure of myoglobin, Nature (London) 185:422.Google Scholar
  127. Kotelchuck, D., and Scheraga, H. A., 1968, The influence of short-range interactions on protein conformation. I. Side chain-backbone interactions within a single peptide unit, Proc. Natl. Acad. Sci. U.S.A. 61:1163.PubMedGoogle Scholar
  128. Kozitsyn, S. A., and Ptitsyn, O. B., 1974, The structure of hydrophobic cores of globins, Mol. Biol. 8:427.Google Scholar
  129. Kraut, J., 1971a, Chymotrypsinogen: X-ray structure, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 3, pp. 165–183, Academic Press, New York.Google Scholar
  130. Kraut, J., 1971 b, Subtilisin: X-ray structure, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 3, pp. 547–560, Academic Press, New York.Google Scholar
  131. Kretsinger, R. H., 1972, Gene duplication in carp muscle calcium binding protein, Nature (London), New Biol. 240:83.Google Scholar
  132. Kretsinger, R. H., and Nockolds, C. E., 1973, Carp muscle calcium-binding protein, J. Biol. Chem. 248:3313.PubMedGoogle Scholar
  133. Kuntz, I. D., 1972, Protein folding, J. Am. Chem. Soc. 94:4009.PubMedGoogle Scholar
  134. Lapanje, S., 1978, Physicochemical Aspects of Protein Denaturation, Wiley, New York.Google Scholar
  135. Leach, S. J., Némethy, G., and Scheraga, H. A., 1966a, Computation of the sterically allowed conformations of peptides, Biopolymers 4:369.PubMedGoogle Scholar
  136. Leach, S. J., Némethy, G., and Scheraga, H. A., 1966b, Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids, Biopolymers 4:887.PubMedGoogle Scholar
  137. Lee, B., and Richards, F. M., 1971, The interpretation of protein structures: Estimation of static accessibility, J. Mol. Biol. 55:379.PubMedGoogle Scholar
  138. Levine, M., Muirhead, H., Stammers, D. K., and Stuart, D. I., 1978, Structure of pyruvate kinase and similarities with other enzymes: Possible implications for protein taxonomy and evolution, Nature (London) 271:626.Google Scholar
  139. Levinthal, C., 1966, Molecular model-building by computer, Sci. Am. 214:42.PubMedGoogle Scholar
  140. Levinthal, C., 1968, Are there pathways for protein folding? J. Chim. Phys. 65:44.Google Scholar
  141. Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature (London) 261:552.Google Scholar
  142. Levitt, M., and Warshel, A., 1975, Computer simulation of protein folding, Nature (London) 253:694.Google Scholar
  143. Liljas, A., and Rossmann, M. G., 1974, X-ray studies of protein interactions, Annu. Rev. Biochem. 43:475–507.Google Scholar
  144. Lindskog, S., Henderson, L. E., Kannon, K. K., Liljas, A., Nyman, P. O., and Strandberg, B., 1971, Carbonic anhydrase, in: The Enzymes (P. D. Boyer, ed.), 3rd. ed., Vol. 5, pp. 587–665, Academic Press, New York.Google Scholar
  145. Love, W. E., Klock, P. A., Lattman, E. E., Padlan, E. A., Ward, K. B., Jr., and Hendrickson, W. A., 1972, The structures of lamprey and bloodworm haemoglobins in relation to their evolution and function, Cold Spring Harbor Symp. Quant. Biol. 36:349.PubMedGoogle Scholar
  146. Margoliash, E., 1972, The molecular variations of cytochrome c as a function of the evolution of species, Harvey Lect. Series 66:177.Google Scholar
  147. Matthews, B. W., 1972, The y turn. Evidence for a new folded conformation in proteins, Macromolecules 5:818.Google Scholar
  148. Matthews, B. W., and Remington, S. J., 1974, The three-dimensional structure of the lysozyme from bacteriophage T4, Proc. Natl. Acad. Sci. U.S.A. 71:4178.PubMedGoogle Scholar
  149. Matthews, B. W., Jansonius, J. N., Colman, P. M., Schoenborn, B. P., and Dupougue, D., 1972, Threedimensional structure of thermolysin, Nature (London), New Biol. 238:37.Google Scholar
  150. Matthews, B. W., Weaver, L. H., and Kester, W. R., 1974, The conformation of thermolysin, J. Biol. Chem. 249:8030.PubMedGoogle Scholar
  151. Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T., and Kraut, J., 1977, Re-examination of the charge relay system in subtilisin and comparison with other serine proteases, J. Biol. Chem. 252:8875.PubMedGoogle Scholar
  152. Mavridis, A., Tulinsky, A., and Liebman, M. N., 1974, Asymmetrical changes in the tertiary structure of achymotrypsin with change in pH, Biochemistry 13:3661.PubMedGoogle Scholar
  153. Moews, P. C., and Kretsinger, R. H., 1975, Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis, J. Mol. Biol. 91:201.PubMedGoogle Scholar
  154. Monod, J., Wyman, J., and Changeux, J. P., 1965, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12:88.PubMedGoogle Scholar
  155. Moras, D., Olsen, K. W., Sabesan, M. N., Buehner, M., Ford, G. C., and Rossmann, M. G., 1975, Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 250:9137.PubMedGoogle Scholar
  156. Morgan, R. S., Gushard, R. H., Carpenter, K. L., and Chalfin, S., 1976, Chains of alternating S- and π-bonded atoms in proteins, in: American Crystallographic Association Winter Meeting, Program and Abstracts, Vol. 4, Ser. 2, p. 15.Google Scholar
  157. Moult, J., Yonath, A., Traub, W., Smilansky, A., Podjarny, A., Rabinovich, D., and Saya, A., 1976, The structure of triclinic lysozyme at 2.5 A resolution, J. Mol. Biol. 100:179.PubMedGoogle Scholar
  158. Nagano, K., 1977, Logical analysis of the mechanism of protein folding. IV. Super-secondary structures, J. Mol. Biol. 109:235.PubMedGoogle Scholar
  159. Némethy, G., and Printz, M. P., 1972, The y turn, a possible folded conformation of the polypeptide chain, Macromolecules 5:755.Google Scholar
  160. Némethy, G., and Scheraga, H. A., 1977, Protein folding, Quant. Rev. Biophys. 10:239.Google Scholar
  161. Némethy, G., Steinberg, J. Z., and Scheraga, H. A., 1963, Influence of water structure and of hydrophobic interactions on the strength of side-chain hydrogen bonds in proteins, Biopolymers 1:43.Google Scholar
  162. Némethy, G., Leach, S. J., and Scheraga, H. A., 1966, The influence of amino acid side chains on the free energy of helix-coil transitions, J. Phys. Chem. 70:998.Google Scholar
  163. Némethy, G., Phillips, D. C., Leach, S. J., and Scheraga, H. A., 1967, A second right-handed helical structure with the parameters of the Pauling-Corey a-helix, Nature (London) 214:363.Google Scholar
  164. Norden, B., 1977, Was photoresolution of amino acids the origin of optical activity in life? Nature (London) 266:567.Google Scholar
  165. Ohlsson, I. B., Nordström, B., and Brändén, C., 1974, Structure and functional similarities within the coenzyme binding domains of dehydrogenases, J. Mol. Biol. 89:339.PubMedGoogle Scholar
  166. Padlan, E. A., and Love, W. E., 1974, Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiata, at 2.5 Å resolution, J. Biol. Chem. 249:4067.PubMedGoogle Scholar
  167. Parr, G. R., Hantgan, R. R., and Taniuchi, H., 1978, Formation of two alternative complementing structures from a cytochrome c fragment (residues 1 to 38) and the apoprotein, J. Biol. Chem. 253:5381.PubMedGoogle Scholar
  168. Pauling, L., and Corey, R. B., 1951a, Atomic coordinates and structure factors for two helical configurations of polypeptide chains, Proc. Natl. Acad. Sci. U.S.A. 37:235.PubMedGoogle Scholar
  169. Pauling, L., and Corey, R. B., 1951 b, Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets, Proc. Natl. Acad. Sci. U.S.A. 37:729.PubMedGoogle Scholar
  170. Perutz, M. F., 1974, Mechanism of denaturation of haemoglobin by alkali, Nature (London) 247:341.Google Scholar
  171. Perutz, M. F., and Lehmann, H., 1968, Molecular pathology of human haemoglobin, Nature (London) 219:902.Google Scholar
  172. Perutz, M. F., and Raidt, H., 1975, Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2, Nature (London) 255:256.Google Scholar
  173. Perutz, M. F., and Ten Eyck, L. F., 1972, Stereochemistry of cooperative effects in hemoglobin, Cold Spring Harbor Symp. Quant. Biol. 36:295.PubMedGoogle Scholar
  174. Perutz, M. F., Muirhead, H., Cox, J. M., and Goaman, L. C. G., 1968, Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: The atomic model, Nature (London) 219:131.Google Scholar
  175. Ploegman, J. H., Drent, G., Kalk, K. H., Hol, W. G. J., Heinrikson, R. L., Keim, P., Weng, L., and Russell, J., 1978, The covalent and tertiary structure of bovine liver rhodanese, Nature (London) 273:124.Google Scholar
  176. Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackerley, R. P., and Saul, F., 1973, Three-dimensional structure of the Fab’ fragment of a human immunoglobulin at 2.8 A resolution, Proc. Natl. Acad. Sci. U.S.A. 70:3305.PubMedGoogle Scholar
  177. Pullman, B., and Pullman, A., 1974, Molecular orbital calculations on the conformation of amino acid residues of proteins, Adv. Protein Chem. 28:348–526.Google Scholar
  178. Pulsinelli, P. D., Perutz, M. F., and Nagel, R. L., 1973, Structure of hemoglobin M Boston, a variant with five-coordinated ferric heme, Proc. Natl. Acad. Sci. U.S.A. 70:3870.PubMedGoogle Scholar
  179. Quiocho, F. A., and Lipscomb, W. N., 1971, Carboxypeptidase A: A protein and an enzyme, Adv. Protein Chem. 25:1–78.PubMedGoogle Scholar
  180. Ramachandran, G. N., and Mitra, A. K., 1976, An explanation for the rare occurrence of cis peptide units in proteins and polypeptides, J. Mol. Biol. 107:85.PubMedGoogle Scholar
  181. Ramachandran, G. N., and Sasisekharan, V., 1968, Conformation of polypeptides and proteins, Adv. Protein Chem. 23:283–437.PubMedGoogle Scholar
  182. Rao, S. T., and Rossmann, M. G., 1973, Comparison of supersecondary structures in proteins, J. Mol. Biol. 76:241.PubMedGoogle Scholar
  183. Reeke, G. N., Jr., Becker, J. W., and Edelman, G. M., 1975, The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding and quaternary structure, J. Biol. Chem. 250:1525.PubMedGoogle Scholar
  184. Reeke, G. N., Jr., Becker, J. W., and Edelman, G. M., 1978, Changes in the three-dimensional structure of concanavalin A upon demetalization, Proc. Natl. Acad. Sci. U.S.A. 75:2286.PubMedGoogle Scholar
  185. Remington, S. J., Anderson, W. F., Owen, J., TenEyck, L. F., Grainger, C. T., and Matthews, B. W., 1978, Structure of the lysozyme from bacteriophage T4: An electron density map at 2.4 Å resolution, J. Mol. Biol. 118:81.PubMedGoogle Scholar
  186. Richards, F. M., 1974, The interpretation of protein structures: Total volume, group volume distributions and packing density, J. Mol. Biol. 82:1.PubMedGoogle Scholar
  187. Richards, F. M., 1977, Areas, volumes, packing and protein structure, Annu. Rev. Biophys. Bioeng. 6:151.PubMedGoogle Scholar
  188. Richards, F. M., and Vithayathil, P. J., 1959, The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components, J. Biol. Chem. 234:1459.PubMedGoogle Scholar
  189. Richards, F. M., and Wyckoff, H. W., 1971, Bovine pancreatic ribonuclease, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 4, pp. 647–806, Academic Press, New York.Google Scholar
  190. Richards, F. M., Wyckoff, H. W., Carlson, W. D., Allewell, N. M., Lee, B., and Mitsui, Y., 1971, Protein structure, ribonuclease-S and nucleotide interactions, Cold Spring Harbor Symp. Quant. Biol. 36:35.Google Scholar
  191. Richardson, J. S., 1976, Handedness of crossover connections in β sheets, Proc. Natl. Acad. Sci. U.S.A. 73:2619.PubMedGoogle Scholar
  192. Richardson, J. S., 1977, β-Sheet topology and the relatedness of proteins, Nature (London) 268:495.Google Scholar
  193. Richardson, J. S., Thomas, K. A., Rubin, B. H., and Richardson, D. C., 1975, Crystal structure of bovine Cu, Zn superoxide dismutase at 3 Å resolution: Chain tracing and metal ligands, Proc. Natl. Acad. Sci. U.S.A. 72:1349.PubMedGoogle Scholar
  194. Richardson, J. S., Richardson, D. C., Thomas, K. A., Silverton, E. W., and Davies, D. R., 1976, Similarity of three-dimensional structure between the immunoglobulin domain and the copper, zinc superoxide dismutase subunit, J. Mol. Biol. 102:221.PubMedGoogle Scholar
  195. Richmond, T. J., and Richards, F. M., 1978, Packing of a-helices: Geometrical constraints and contact areas, J. Mol. Biol. 119:537.PubMedGoogle Scholar
  196. Robertus, J. D., Kraut, J., Alden, R. A., and Birktoft, J. J., 1972, Subtilisin: A stereochemical mechanism involving transition-state stabilization, Biochemistry 11:4293.PubMedGoogle Scholar
  197. Robson, B., and Pain, R. H., 1971, Analysis of the code relating sequence to conformation in proteins: Possible implications for the mechanism of formation of helical regions, J. Mol. Biol. 58:237.PubMedGoogle Scholar
  198. Robson, B., and Suzuki, E., 1976, Conformational properties of amino acid residues in globular proteins, J. Mol. Biol. 107:327.PubMedGoogle Scholar
  199. Rose, G. D., 1978, Prediction of chain turns in globular proteins on a hydrophobic basis, Nature (London) 272:586.Google Scholar
  200. Rossmann, M. G., and Argos, P., 1975, A comparison of the heme binding pocket in globins and cytochrome b5, J. Biol. Chem. 250:7525.PubMedGoogle Scholar
  201. Rossmann, M. G., and Argos, P., 1976, Exploring structural homology of proteins, J. Mol. Biol. 105:75.PubMedGoogle Scholar
  202. Rossmann, M. G., Moras, D., and Olsen, K. W., 1974, Chemical and biological evolution of a nucleotidebinding protein, Nature (London) 250:194.Google Scholar
  203. Rossmann, M. G., Liljas, A., Branden, C., and Banaszak, L. J., 1975, Evolutionary and structural relationships among dehydrogenases, in: The Enzymes (P. D. Boyer, ed.), 3rd ed., Vol. 11, pp. 61–102, Academic Press, New York.Google Scholar
  204. Rowe, E. S., and Tanford, C., 1973, Equilibrium and kinetics of a homogeneous human immunoglobulin light chain, Biochemistry 12:4822.PubMedGoogle Scholar
  205. Sachs, D. H., Schechter, A. N., Eastlake, A., and Anfinsen, C. B., 1972a, Antibodies to a distinct antigenic determinant of staphylococcal nuclease, J. Immunol. 109:1300.PubMedGoogle Scholar
  206. Sachs, D. H., Schechter, A. N., Eastlake, A., and Anfinsen, C. B., 1972b, Inactivation of staphylococcal nuclease by the binding of antibodies to a distinct antigenic determinant, Biochemistry 11:541.PubMedGoogle Scholar
  207. Sachs, D. H., Schechter, A. N., Eastlake, A., and Anfinsen, C. B., 1972c, An immunological approach to the conformational equilibria of polypeptides, Proc. Natl. Acad. Sci. U.S.A. 69:3790.PubMedGoogle Scholar
  208. Sachs, D. H., Schechter, A. N., Eastlake, A., and Anfinsen, C. B., 1974, An immunologic distinction between possible origins of enzymatic activity in a polypeptide fragment of staphylococcal nuclease, Nature (London) 251:242.Google Scholar
  209. Sasaki, K., Dockerill, S., Adamiak, D. A., Tickle, J. J., and Blundell, T., 1975, X-ray analysis of glucagon and its relationship to receptor binding, Nature (London) 257:751.Google Scholar
  210. Sawyer, L., Shotton, D. M., Campbell, J. W., Wendell, P. L., Muirhead, H., Watson, H. C., Diamond, R., and Cadner, R. C., 1978, The atomic structure of crystalline porcine pancreatic elastase at 2.5 A resolution: Comparison with the structure of a-chymotrypsin, J. Mol. Biol. 118:137.PubMedGoogle Scholar
  211. Schechter, A. N., 1970, Measurement of fast biochemical reactions, Science 170:273.PubMedGoogle Scholar
  212. Schechter, A. N., 1976, The conformation of peptides and proteins in solution: Immunochemical studies, in: Hormone and Antihormone Action on the Target Cell (J. H. Clark, W. Klee, A. Levitski, and J. Wolff, eds.), pp. 29–38, Dahlem Konferenzen, Berlin.Google Scholar
  213. Schechter, A. N., Chen, R. F., and Anfinsen, C. B., 1970, Kinetics of renaturation of staphylococcal nuclease, Science 167:886.PubMedGoogle Scholar
  214. Schmid, F. Y., and Baldwin, R. L., 1978, Acid catalysis of the formation of the slow-folding species of RNase A: Evidence that the reaction is proline isomerization, Proc. Natl. Acad. Sci. U.S.A. 75:4764.PubMedGoogle Scholar
  215. Schulz, G. E., and Schirmer, R. H., 1979, Principles of Protein Structure, pp. 131–148, Springer-Verlag, New York.Google Scholar
  216. Schulz, G. E., Schirmer, R. H., Sachsenheimer, W., and Pai, E. E., 1978, The structure of the flavoenzyme glutathione reductase, Nature (London) 273:120.Google Scholar
  217. Sela, M., White, F. H., Jr., and Anfinsen, C. B., 1957, Reductive cleavage of disulfide bridges in ribonuclease, Science 125:691.PubMedGoogle Scholar
  218. Shaw, P. J., and Muirhead, H., 1976, The active site of glucose phosphate isomerase, Fed. Eur. Biochem. Soc. Lett. 65:50.Google Scholar
  219. Shintzky, M., and Goldman, R., 1967, Fluorometric detection of histidine-tryptophan complexes in peptides and proteins, Eur. J. Biochem. 3:139.Google Scholar
  220. Shrake, A., and Rupley, J. A., 1973, Environment and exposure to solvent of protein atoms. Lysozyme and insulin, J. Mol. Biol. 79:351.PubMedGoogle Scholar
  221. Singer, S. J., and Doolittle, R. L., 1966, Antibody active sites and immunoglobulin molecules, Science 153:13.PubMedGoogle Scholar
  222. Srinivasan, R., Balasubramanian, R., and Rajan, S. S., 1976, Extended helical conformation newly observed in protein folding, Science 194:720.PubMedGoogle Scholar
  223. Steiner, D. F., and Clark, J. L., 1968, The spontaneous reoxidation of reduced beef and rat proinsulins, Proc. Natl. Acad. Sci. U.S.A. 60:622.PubMedGoogle Scholar
  224. Steitz, T. A., Fletterick, R. J., Anderson, W. F., and Anderson, C. M., 1976, High resolution x-ray structure of yeast hexokinase, an allosteric protein exhibiting a non-symmetric arrangement of subunits, J. Mol. Biol. 104:197.PubMedGoogle Scholar
  225. Sternberg, M. J. E., and Thornton, J. M., 1976, On the conformation of proteins: The handedness of the βstrand-a-helix-β-strand unit, J. Mol. Biol. 105:367.PubMedGoogle Scholar
  226. Sternberg, M. J. E., and Thornton, J. M., 1977, On the conformation of proteins: An analysis of β-pleated sheets, J. Mol. Biol. 110:285.PubMedGoogle Scholar
  227. Stroud, R. M., Kay, L. M., and Dickerson, R. E., 1972, The crystal and molecular structure of DIP-inhibited bovine trypsin at 2.7 A resolution, Cold Spring Harbor Symp. Quant. Biol. 36:125–140.PubMedGoogle Scholar
  228. Suzuki, E., and Robson, B., 1976, Relationship between helix-coil transition parameters for synthetic polypeptides and helix conformation parameters for globular proteins. A simple model, J. Mol. Biol. 107:357.PubMedGoogle Scholar
  229. Sweet, R. M., Wright, H. T., Janin, J., Chothia, C. H., and Blow, D. M., 1974, Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6 A resolution, Biochemistry 13:4212.PubMedGoogle Scholar
  230. Takano, T., 1977, Structure of myoglobin refined at 2.0 A resolution I. Crystallographic refinement of metmyoglobin from sperm whale, J. Mol. Biol. 110:537.PubMedGoogle Scholar
  231. Tanford, C., 1968, Protein denaturation, Parts A and B, Adv. Protein Chem. 23:122.Google Scholar
  232. Tanford, C., 1970, Protein denaturation, Part C, Adv. Protein Chem. 24:2.Google Scholar
  233. Tang, J., James, M. N. G., Hsu, I. N., Jenkins, J. A., and Blundell, T. L., 1978, Structural evidence for gene duplication in the evolution of the acid proteases, Nature (London) 271:618.Google Scholar
  234. Taniuchi, H., and Anfinsen, C. B., 1969, An experimental approach to the study of the folding of staphylococcal nuclease, J. Biol. Chem. 244:3864.PubMedGoogle Scholar
  235. Taniuchi, H., and Anfinsen, C. B., 1971, Simultaneous formation of two alternative enzymically active structures by complementation of two overlapping fragments of staphylococcal nuclease, J. Biol. Chem. 246:2291.PubMedGoogle Scholar
  236. Taniuchi, H., Parker, D. S., and Bohnert, J. L., 1977, Study of equilibration of the system involving two alternative, enzymically active complementing structures simultaneously formed from two overlapping fragments of staphylococcal nuclease, J. Biol. Chem. 252:125.PubMedGoogle Scholar
  237. Teale, J. M., and Benjamin, D. C., 1977, Antibody as immunological probe for studying refolding of bovine serum albumin, J. Biol. Chem. 252:4521.PubMedGoogle Scholar
  238. Timkovich, R., and Dickerson, R. E., 1976, The structure of Paracoccus denitrifiicans cytochrome c 550, J. Biol. Chem. 251:4033.PubMedGoogle Scholar
  239. Tsong, T. Y., Baldwin, R. L., Elson, E. L., 1971, The sequential unfolding of ribonuclease A: Detection of a fast initial phase in the kinetics of unfolding, Proc. Natl. Acad. Sci. U.S.A. 68:2712.PubMedGoogle Scholar
  240. Tulinsky, A., Vandlen, R. L., Morimoto, C. N., Mani, N. V., and Wright, L. H., 1973, Variability in the tertiary structure of a-chymotrypsin at 2.8 A resolution, Biochemistry 12:4185.PubMedGoogle Scholar
  241. Vainshtein, B. K., Harutyunyan, E. H., Kuranova, I. P., Borisov, V. V., Sosfenov, N. I., Pavlovsky, A. G., Grebenko, A. I., and Konareva, N. V., 1975, Structure of leghaemoglobin from lupin root nodules at 5 A resolution, Nature (London) 254:163.Google Scholar
  242. Vandlen, R. L., and Tulinsky, A., 1973, Changes in the tertiary structure of a-chymotrypsin with change in pH, Biochemistry 12:4193.PubMedGoogle Scholar
  243. Venetianer, P., and Straub, F. B., 1963, The enzymic reactivation of reduced ribonuclease, Biochim. Biophys. Acta. 67:166.PubMedGoogle Scholar
  244. Venkatachalam, C. M., 1968, Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units, Biopolymers 6:1425.PubMedGoogle Scholar
  245. Wagner, G., De Marco, A., and Wuthurch, K., 1976, Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI): 1. 3H NMR studies, Biophys. Struct. Mech. 2:139.PubMedGoogle Scholar
  246. Watenpaugh, K. D., Sieker, L. C., Herriott, J. R., and Jensen, L. H., 1973, Refinement of the model of a protein: Rubredoxin at 1.5 A resolution, Acta Cryst. B29:943.Google Scholar
  247. Watson, H. C., 1969, The stereochemistry of the protein myoglobin, Progr. Stereochem. 4:299.Google Scholar
  248. Weatherford, D. W., and Salemme, F. R., 1979, Conformations of twisted parallel ββ-sheets and the origin of chirality in protein structures, Proc. Natl. Acad. Sci. U.S.A. 76:19.PubMedGoogle Scholar
  249. Westmoreland, D. G., and Matthews, C. R., 1973, Nuclear magnetic resonance study of the thermal denaturation of ribonuclease A: Implications for multistate behavior at low pH, Proc. Natl. Acad. Sci. U.S.A. 70:914.PubMedGoogle Scholar
  250. Wetlaufer, D. B., and Ristow, S., 1973, Acquisition of three-dimensional structure of proteins, Annu. Rev. Biochem. 42:135.PubMedGoogle Scholar
  251. White, J. L., Hackert, M. L., Buehner, M., Adams, M. J., Ford, G. C., Lentz, P. J., Jr., Smiley, J. E., Steindel, S. J., and Rossmann, M. G., 1976, A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its tertiary complexes, J. Mol. Biol. 102:759.PubMedGoogle Scholar
  252. Winkler, F. K., and Dunitz, J. D., 1971, The non-planar amide group, J. Mol. Biol. 59:169.PubMedGoogle Scholar
  253. Winkler, F. K., Schutt, C. E., Harrison, S. C., and Bricogne, G., 1977, Tomato bushy stunt virus at 5.5 A resolution, Nature (London) 265:509.Google Scholar
  254. Wright, C. S., 1977, The crystal structure of wheat germ agglutinin at 2.2 Å resolution. J. Mol. Biol 111:439PubMedGoogle Scholar
  255. Wyckoff, H., 1968, (Comments on cow vs rat RNAse), Brookhaven Symp. Biol. 21:252.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Kenneth A. Thomas
    • 1
  • Alan N. Schechter
    • 2
  1. 1.Merck, Sharp and Dohme Research LaboratoriesRahwayUSA
  2. 2.Laboratory of Chemical Biology, National Institute of Arthritis, Metabolism, and Digestive DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations