Regulation of Enzyme Activity

  • B. D. Sanwal
Part of the Biological Regulation and Development book series (BRD, volume 2)


A glance at any map showing the scope, theory, principles, and techniques of metabolic pathways is sufficient for one to realize the need for regulation of the myriad enzymes that catalyze the individual reactions in these pathways. A controlled and coordinated flow of metabolites in the interconnected catabolic, anabolic, and amphibolic routes is absolutely essential to support the ever-changing energy and growth demands of a cell (Davis, 1961; Sanwal, 1970). This is achieved in all living systems principally by the regulation of critical, strategically placed enzymes of individual pathways. (See Goldberger’s definition of “regulation” in Volume 1, Chapter 1.) Control can be exerted by a change in the quantities or catalytic efficiencies of the enzymes. The quantity of an enzyme can be regulated by an alteration of either its rate of synthesis or its rate of degradation. The former encompasses regulatory mechanisms that act at the genetic level, such as induction and repression, and are discussed in Volume 1 of this treatise; the latter encompasses regulatory mechanisms that act at the level of protein turnover, and are discussed in Chapter 2 of this volume.


Glutamine Synthetase Fatty Acid Synthetase Allosteric Site Ornithine Transcarbamylase Negative Cooperativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. B., Hennig, S. B., Ginsburg, A., and Stadtman, E. R., 1970, Association of ATP-glutamine synthetase adenylyltransferase activity with the PI component of the glutamine synthetase deadenylylation system, Proc. Natl. Acad. Sci. U.S.A. 67:1417.PubMedCrossRefGoogle Scholar
  2. Atkinson, D. E., and Walton, G. M., 1967, Adenosine triphosphate conservation in metabolic regulation, J. Biol. Chem. 242:3239.PubMedGoogle Scholar
  3. Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7:4030.PubMedCrossRefGoogle Scholar
  4. Atkinson, D. E., 1970, Enzymes as control elements in metabolic regulation, in: The Enzymes (P. Boyer, ed.), Vol. 1, pp. 461–489, Academic Press, New York.Google Scholar
  5. Beavo, J. A., Bechtel, P. J., and Krebs, E. G., 1975, Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle, Adv. Cyclic Nucleotide Res. 5:241.PubMedGoogle Scholar
  6. Bellamy, G., and Bornstein, P., 1971, Evidence for procollagen, a biosynthetic presursor of collagen, Proc. Natl. Acad. Sci. U.S.A. 68:1138.PubMedCrossRefGoogle Scholar
  7. Blangy, D., Buc, H., and Monod, J., 1968, Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli, J. Mol. Biol. 31:13.PubMedCrossRefGoogle Scholar
  8. Blobel, G., and Potter V. R., 1966, Relation of ribonuclease and ribonuclease inhibitor to the isolation of polysomes from rat liver, Proc. Natl. Acad. Sci. U.S.A. 55:1283.PubMedCrossRefGoogle Scholar
  9. Bloch, K., and Vance, D., 1977, Control mechanisms in the synthesis of saturated fatty acids, Annu. Rev. Biochem. 46:263.PubMedCrossRefGoogle Scholar
  10. Bonsignore, A., De Flora, A., Mangiarotti, M. A., Lorenzoni, I., and Alema, S., 1968, A new hepatic protein inactivating glucose 6-phosphate dehydrogenase, Biochem. J. 106:147.PubMedGoogle Scholar
  11. Brew, K., Vanaman, T. C., and Hill, R. L., 1968, The role of a-lactalbumin and the A-protein in lactose synthetase; A unique mechanism for the control of biological reactions, Proc. Natl. Acad. Sci. U.S.A. 59:491.PubMedCrossRefGoogle Scholar
  12. Brostrom, M. A., Bromstrom, C. O., Breekennidge, B. M., and Wolff, D. J., 1976, Regulation of adenylate cyclase from glial tumor cells by calcium and a calcium binding protein, J. Biol. Chem. 251:4744.PubMedGoogle Scholar
  13. Brown, M. S., Segal, A., and Stadtman, E. R., 1971, Modulation of glutamine synthetase adenylylation and deadenylylation is mediated by metabolic transformation of the PII-regulatory protein, Proc. Natl. Acad. Sci. U.S.A. 68:2949.PubMedCrossRefGoogle Scholar
  14. Brown, N. C., and Reichard, P., 1969, Role of effector binding in allosteric control of ribonucleoside diphosphate reductase, J. Mol. Biol. 46:39.PubMedCrossRefGoogle Scholar
  15. Brown, N. C., Larsson, A., and Reichard, P., 1967, On the subunit structure of ribonucleoside diphosphate reductase, J. Biol. Chem. 242:4272.PubMedGoogle Scholar
  16. Buchanan, B. B., and Schürmann, P., 1973, Ribulose 1,5-diphosphate carboxylase: A regulatory enzyme in the photosynthetic assimilation of carbon dioxide, Curr. Top. Cell. Regul. 7:1–20.PubMedGoogle Scholar
  17. Burgess, R. R., Travers, A. A., Dunn, J. J., and Bautz, E. K. F., 1969, Factor stimulating transcription by RNA polymerase, Nature (London) 221:43.CrossRefGoogle Scholar
  18. Carlson, C. A., and Kim, K. H., 1974, Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation, Arch. Biochem. Biophys. 164: 478.PubMedCrossRefGoogle Scholar
  19. Caskey, C. T., Ashton, D. M., and Wyngaarden, J. B., 1964, The enzymology of feedback inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by purine ribonucleotide, J. Biol. Chem. 239:2570.PubMedGoogle Scholar
  20. Challand, G. S., and Rosemeyer, M. A., 1974, The correlation between the apparent molecular weight and the enzymic activity of lactose synthetase, FEBS Lett. 47:94.PubMedCrossRefGoogle Scholar
  21. Chamberlin, M. J., 1974, Bacterial DNA-dependent RNA polymerase, in: The Enzymes (P. D. Boyer, ed), 3rd ed., Vol. 10, pp. 333–374, Academic Press, New York.Google Scholar
  22. Changeux, J. P., 1961, The feedback control mechanism of biosynthetic L-threonine deaminase by L-isoleucine, Cold Spring Harbor Symp. Quant. Biol. 26:313.PubMedCrossRefGoogle Scholar
  23. Chen, A. K., Ashok, B., Hopper, S., Abrams, R., and Franzen, J. S., 1974, Substrate and effector binding to ribonucleoside diphosphate reductase of Lactobacillus leichmanni, Biochemistry 13:654.PubMedCrossRefGoogle Scholar
  24. Cheung, W. Y., 1969, Cyclic 3′,5′-nucleotide phosphodiesterase. Preparation of a partially inactive enzyme and its subsequent stimulation by snake venom, Biochem. Biophys. Acta 191:303.PubMedCrossRefGoogle Scholar
  25. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19.PubMedCrossRefGoogle Scholar
  26. Cohen, G. N., 1965, Regulation of enzyme activity in microorganisms, Annu. Rev. Microbiol. 19:105.PubMedCrossRefGoogle Scholar
  27. Cohen, G. N., 1969, The aspartokinases and homoserine dehydrogenases of Escherichia coli, Curr. Top. Cell. Regul. 1:183–231.Google Scholar
  28. Cohen, P., 1973, The subunit structure of rabbit skeletal muscle phosphorylase kinase and the molecular basis of its activation reactions, Eur. J. Biochem. 34:1.PubMedCrossRefGoogle Scholar
  29. Cohen, P., 1976, The regulation of protein function by multisite phosphorylation, Trends Biochem. Sci. 1:38.CrossRefGoogle Scholar
  30. Cohen, P., 1978, The role of cyclic-AMP dependent protein kinase in the regulation of glycogen metabolism in mammalian skeletal muscle, in: Current Topics in Cellular Regulation (B. L. Horecker and E. R. Stadtman, eds.),Vol. 14, pp. 117–196, Academic Press, New York.Google Scholar
  31. Cohen, P., and Antoniw, J. F., 1973, The control of phosphorylase phosphatase by “second site phosphorylation”; a new form of enzyme regulation, FEBS Lett. 34:43.PubMedCrossRefGoogle Scholar
  32. Cohen, P., Antoniw, J. F., Nimmo, H. G., and Proud, C. G., 1975, Structure and regulation of enzymes for the degradation and resynthesis of glycogen, Biochem. Soc. Trans. 3:849.Google Scholar
  33. Cohen, P., Burchell, A., Foulkes, J. G., Cohen, P. T., Vanaman, T. C., and Nairn, A. C., 1978, Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase, FEBS Lett. 92:287.PubMedCrossRefGoogle Scholar
  34. Collier, R. J., 1967, Effect of diphtheria toxin on protein synthesis: Inactivation of one of the transfer factor, J. Mol. Biol. 25:83.PubMedCrossRefGoogle Scholar
  35. Collier, R. J., and Pappenheimer, A. M., Jr., 1964, Studies on the mode of action of Diphtheria toxin. II. Effect of toxin on the amino acid incorporation in cell-free systems, J. Exp. Med. 120:1019.PubMedCrossRefGoogle Scholar
  36. Conway, A., and Koshland, D. E., Jr., 1968, Negative cooperativity in enzyme action. The binding of diphosphopyridine nucleotide to glyceraldehyde 3-phosphate dehydrogenase, Biochemistry 7:4011.PubMedCrossRefGoogle Scholar
  37. Cori, G. T., Colowick, S. P., and Cori, C. F., 1938, The formation of glucose-1-phosphoric acid in extracts of mammalian tissues and of yeast, J. Biol. Chem. 123:375.Google Scholar
  38. Dahlquist, F. W., and Purich, D. L., 1975, Regulation of Escherichia coli glutamine synthetase. Evidence for the action of some feedback modifiers at the active site of the unadenylylated enzyme, Biochemistry 14:1980.PubMedCrossRefGoogle Scholar
  39. Darnall, D. W., and Klotz, I. M., 1975, Subunit constitution of proteins: A table, Arch. Biochem. Biophys. 166:651.PubMedCrossRefGoogle Scholar
  40. Datta, P., and Gest, H., 1964, Control of enzyme activity by concerted feedback inhibition, Proc. Natl Acad. Sci. U.S.A. 52:1004.PubMedCrossRefGoogle Scholar
  41. Datta, P., Gest, H., and Segal, H. L., 1964, Effect of feedback modifiers on the state of aggregation of homoserine dehydrogenase of Rhodospirillum rubrum, Proc. Natl. Acad. Sci. U.S.A. 51:125.PubMedCrossRefGoogle Scholar
  42. Davie, E. W., and Fujikawa, K., 1975, Basic mechanisms in blood coagulation, Annu. Rev. Biochem. 44:799.PubMedCrossRefGoogle Scholar
  43. Davis, B. D., 1961, The teleonomic significance of biosynthetic control mechanisms, Cold Spring Harbor Symp. Quant. Biol. 26:1.PubMedCrossRefGoogle Scholar
  44. Deutch, C. E., and Soifer, R. L., 1975, Regulation of proline catabolism by leucyl, phenylalanyl—tRNA— protein transferase, Proc. Natl. Acad. Sci. U.S.A. 72:405.PubMedCrossRefGoogle Scholar
  45. Döbeln, U. von, and Reichard, P., 1976, Binding of substrates to Escherichia coli ribonucleotide reductase, J. Biol. Chem. 251:3616.Google Scholar
  46. Duffy, J. J., Petrusek, R. L., and Geiduschek, E. P., 1975, Conversion of Bacillus subtilis RNA polymerase activity In vitro by a protein induced by phage SPO1, Proc. Natl. Acad. Sci. U.S.A. 72:2366.PubMedCrossRefGoogle Scholar
  47. Duncan, B. K., Diamond, G. R., and Bessman, M. J., 1972, Regulation of enzyme activity through subunit interaction, J. Biol. Chem. 247:8136.PubMedGoogle Scholar
  48. Ebner, K. E., and Magee, S. C., 1975, Lactose synthetase, in: Subunit Enzymes (K. E. Ebner, ed.), pp. 137–179, Marcel Dekker, New York.Google Scholar
  49. Engel, P. C., 1973, Evolution of enzyme regulator sites: Evidence for partial gene duplication from amino-acid sequence of bovine glutamate dehydrogenase, Nature (London) 241:118.CrossRefGoogle Scholar
  50. Engel, P. C., and Dalziel, K., 1969, Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrate, Biochem. J. 115:621.PubMedGoogle Scholar
  51. Ferdinand, W., 1966, The interpretation of non-hyperbolic rate curves for two-substrate enzymes, Biochem. J. 98:278.PubMedGoogle Scholar
  52. Fitzerald, D. K., Broadbeck, U., Kiyosawa, I., Mawal, R., Colvin, B., and Ebner, K. E., 1970, A-Lactalbumin and the lactose synthetase reaction, J. Biol. Chem. 245:2103.Google Scholar
  53. Foor, F., Janssen, K. A., and Magasanik, B., 1975, Regulation of synthesis of glutamine synthetase by adenylylated glutamine synthetase, Proc. Natl. Acad. Sci. U.S.A. 72:4844.PubMedCrossRefGoogle Scholar
  54. Fox, T. D., 1976, Identification of phage SPO1 proteins coded by regulatory genes 33 and 34, Nature (London) 262:748.CrossRefGoogle Scholar
  55. Frieden, C., 1963, Glutamate dehydrogenase. V. The relation of enzyme structure to the catalytic function, J. Biol. Chem. 238:3286.PubMedGoogle Scholar
  56. Frieden, C., 1967, Treatment of enzyme kinetic data, J. Biol. Chem. 242:4045.PubMedGoogle Scholar
  57. Frieden, C., 1970, Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept, J. Biol. Chem. 245:5788.PubMedGoogle Scholar
  58. Frieden, C., 1971, Protein-protein interaction and enzymatic activity, Annu. Rev. Biochem. 40:653.PubMedCrossRefGoogle Scholar
  59. Gerhart, J. C., and Pardee, A. B., 1961, Separation of feedback inhibition from activity of aspartate transcarbamylase, Fed. Proc. 20:224.Google Scholar
  60. Gerhart, J. C., and Pardee, A. B., 1962, The enzymology of control by feedback inhibition, J. Biol. Chem. 237:891.PubMedGoogle Scholar
  61. Gerhart, J. C., and Schachman, H. K., 1965, Direct subunits for the regulation and catalytic activity of aspartate transcarbamylase, Biochemistry 4:1054.PubMedCrossRefGoogle Scholar
  62. Gerhart, J. C., and Schachman, H. K., 1968, Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and the absence of specific ligands, Biochemistry 7:538.PubMedCrossRefGoogle Scholar
  63. Gerlt, J. A., Rabinowitz, K. W., Dunne, C. P., and Wood, W. A., 1973, The mechanism of action of 5′-adenylic acid-activated threonine dehydrase, J. Biol. Chem. 248:8200.PubMedGoogle Scholar
  64. Gill, G. N., and Garren, L. D., 1969, A cyclic 3′,5′-adenosine monophosphate dependent protein kinase from the adrenal cortex: Comparison with a cyclic AMP binding protein, Biochem. Biophys. Res. Commun. 39:335.CrossRefGoogle Scholar
  65. Ginsburg, A., 1969, Conformational changes in glutamine synthetase from Escherichia coli. II. Some characteristics of the equilibrium binding of feedback inhibitors to the enzyme, Biochemistry 8:1726.PubMedCrossRefGoogle Scholar
  66. Ginsburg, A., and Stadtman, E. R., 1970, Multienzyme systems, Annu. Rev. Biochem. 39:429.PubMedCrossRefGoogle Scholar
  67. Ginsburg, A., and Stadtman, E. R., 1975, Glutamine synthetase of Escherichia coli: Structure and regulation, in: Subunit Enzymes (K. E. Ebner, ed.), pp. 43–84, Marcel Dekker, New York.Google Scholar
  68. Goff, C. G., 1974, Chemical structure of a modification of the Escherichia coli ribonucleic acid polymerase apolypeptide induced by bacteriophage T4 infection, J. Biol. Chem. 249:6181.PubMedGoogle Scholar
  69. Goldberger, R. F., 1974, Autogenous regulation of gene expression, Science 183:810.PubMedCrossRefGoogle Scholar
  70. Goldie, A. H., and Sanwal, B. D., 1980, Allosteric control by calcium and mechanism of desensitization of phosphoenol pyruvate carboxykinase of Escherichia coli, J. Biol. Chem. 255:1399.PubMedGoogle Scholar
  71. Goldin, B. R., and Frieden, C., 1971, L-Glutamate dehydrogenase, Curr. Top. Cell. Regul. 4:77–114.Google Scholar
  72. Goulian, M., and Beck, W. S., 1966, Purification and properties of Cobamide-dependent ribonucleotide reductase from Lactobacillus leichmannii, J. Biol. Chem. 241:4233.PubMedGoogle Scholar
  73. Graves, D. J., Martensen, T. M., Tu, J.-I., and Tessmer, G. M., 1974, The use of alternative substrates in the study of phosphorylase phosphatase and phosphorylase kinase, in: Metabolic Interconversion of Enzymes 1973 (E. H. Fischer, E. G. Krebs, H. Neurath, and E. R. Stadtman, eds.), pp. 53–61, SpringerVerlag, New York.CrossRefGoogle Scholar
  74. Haldenwang, W. G., and Losick, R., 1979, A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis, Nature (London) 282:256.CrossRefGoogle Scholar
  75. Hayaishi O., 1976, Poly ADP-ribose and ADP-ribosylation of proteins, Trends Biochem. Sci. 1:9.CrossRefGoogle Scholar
  76. Hayaishi, O., and Ueda, K. 1977, Poly (ADP-ribose) and ADP-ribosylation of proteins, Annu. Rev. Biochem. 46:95.PubMedCrossRefGoogle Scholar
  77. Hayakawa, T., Perkins, J. P., and Krebs, E. G., 1973, Studies on the subunit structure of rabbit skeletal muscle phosphorylase kinase, Biochemistry 12:574.PubMedCrossRefGoogle Scholar
  78. Heller, J. S., Fong, W. F., and Canellakis, E. S., 1976, Induction of a protein inhibitor to ornithine decarboxylase by the end product of its reaction, Proc. Natl. Acad. Sci. U.S.A. 73:1858.PubMedCrossRefGoogle Scholar
  79. Hill, R. L., and Brew, K., 1975, Lactose synthetase, Adv. Enzymol. 43:411.PubMedGoogle Scholar
  80. Hirata, M., Tokushige, M., Inagaki, A., and Hayaishi, O., 1965, Nucleotide activation of threonine deaminase from Escherichia coli, J. Biol. Chem. 240:1711.PubMedGoogle Scholar
  81. Honjo, T., and Hayaishi, O., 1973, Enzymatic ADP-ribosylation of proteins and regulation of cellular activity, Curr. Top. Cell. Regul. 7:87–127.PubMedGoogle Scholar
  82. Honjo, T., Nishizuka, Y., and Hayaishi, O., 1969, Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis, J. Biol. Chem. 243:3553.Google Scholar
  83. Hoppe, J., and Wagner, K. G., 1979, CAMP-dependent protein kinase I, a unique allosteric enzyme, Trends Biochem. Sci. 4: 282.CrossRefGoogle Scholar
  84. Horecker, B. L., Melloni, E., and Pontremoli, S., 1975, Fructose 1,6-biphosphatase: Properties of the neutral enzyme and its modification by proteolytic enzymes, Adv. Enzymol. 42:193.PubMedGoogle Scholar
  85. Horvitz H. R. 1973, Polypeptide bound to the host RNA ol merase is specified by T4 control gene 33, Nature (London), New Biol. 244:137.CrossRefGoogle Scholar
  86. Huestis, W. H., and Raftery, M. A., 1972a, A study of cooperative interactions in hemoglobin using fluorine nuclear magnetic resonance, Biochemistry 11:1648.PubMedCrossRefGoogle Scholar
  87. Huestis, W. H., and Raftery, M. A., 1972b, Observation of cooperative ionizations in hemoglobin, Proc. Natl. Acad. Sci. U.S.A. 69:1887.PubMedCrossRefGoogle Scholar
  88. Iglewski, B. H., and Kabat, D., 1975, NAD dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin, Proc. Natl. Acad. Sci. U.S.A. 72:2284.PubMedCrossRefGoogle Scholar
  89. Issaly, I. M., and Issaly, A. S., 1974, Control of ornithine carbamoyltransferase activity by arginase in Bacillus subtilis, Eur. J. Biochem. 49:485.PubMedCrossRefGoogle Scholar
  90. Kakiuchi, S., Yamazaki, R., Teshima, Y., and Uenishi, K., 1973, Regulation of nucleoside cyclic 3′ :5′-monophosphate phosphodiesterase activity from rat brain by a modulator and Ca2+, Proc. Natl. Acad. Sci. U.S.A. 70:3526.PubMedCrossRefGoogle Scholar
  91. Kemp, R. G., and Krebs, E. G., 1967, Binding of metabolites by phosphofructokinase, Biochemistry 6:423.PubMedCrossRefGoogle Scholar
  92. Killilea, S. D., Brandt, H., and Lee, E. Y. C., 1976a, Modulation of protein function by phosphorylation: The role of protein phosphatase, Trends Biochem. Res. 1:30.Google Scholar
  93. Killilea, S. D., Brandt, H., Lee, E. Y. C., and Whelan, W. J., 1976b, Evidence for the coordinate control of activity of liver glycogen synthetase and phosphorylase by a single protein phosphatase, J. Biol. Chem. 251:3263.Google Scholar
  94. Kingdon, H. S., Shapiro, B. M., and Stadtman, E. R., 1967, Regulation of glutamine synthetase. VIII. ATPglutamine synthetase adenyltransferase an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase, Proc. Natl. Acad. Sci. U.S.A. 58:1703.PubMedCrossRefGoogle Scholar
  95. Kirschner, K., Eigen, M., Bittman, R., and Voight, B., 1966, The binding of nicotinamide adenine dinucleotide to yeast D-glyceraldehyde-3-phosphate dehydrogenase: Temperature-jump relaxation studies on the mechanism of an allosteric enzyme, Proc. Natl. Acad. Sci. U.S.A. 56:1661.PubMedCrossRefGoogle Scholar
  96. Klee, W. A., and Klee, C. B., 1972, The interaction of a-lactalbumin and the A protein of lactose synthetase, J. Biol. Chem. 247:2336.PubMedGoogle Scholar
  97. Klemme, J.-H., 1976, Unidirectional inhibition of phosphoenolpyruvate carboxykinase from Rhodospirillium rubrum by ATP. Arch. Microbiol. 107:189.PubMedCrossRefGoogle Scholar
  98. Klinsør, L. and Atkinson, D. E. 1970, Regulatory pro erties of phosphoribosyladenosine triphosphate s ynthetase. Synergism between adenosine monophosphate, phosphoribosyladenosine triphosphate, and histidine, Biochemistry 9:2021.CrossRefGoogle Scholar
  99. Knudsen, J., Clark, S., and Dils, R., 1976, Purification and some properties of a medium-chain acylthioester hydrolase from lactating rabbit mammary gland which terminates chain elongation in fatty acid synthesis, Biochem. J. 160:683.PubMedGoogle Scholar
  100. Koshland, D. E., Jr., 1970, The molecular basis of enzyme regulation, in: The Enzymes, Vol. 1 (P. D. Boyer, ed.), pp. 341–396, Academic Press, New York.Google Scholar
  101. Koshland, D. E., Nemethy, E., and Filmer, D., 1966, Comparison of experimental binding data and theoretical model in protein containing subunits, Biochemistry 5:365.PubMedCrossRefGoogle Scholar
  102. Krebs, E. G., 1972, Protein kinases, Curr. Top. Cell. Regul. 5:99–133.PubMedGoogle Scholar
  103. Krebs, E. G., and Beavo, J. A., 1979, Phosphorylation-dephosphorylation of enzymes, Annu. Rev. Biochem. 48:923.PubMedCrossRefGoogle Scholar
  104. Krebs, E. G., and Fischer, E. H., 1956, The phosphorylase b to a converting enzyme of rabbit skeletal muscle, Biochem. Biophys. Acta 20:150.PubMedCrossRefGoogle Scholar
  105. Krebs, E. G., Love, D. S., Bratvold, G. E., Trayser, K. A., Meyer, W. L., and Fischer, E. H., 1964, Purification and properties of rabbit skeletal muscle phosphorylase b kinase, Biochemistry 3:1022.PubMedCrossRefGoogle Scholar
  106. Krebs, H. A., 1969, The role of equilibria in the regulation of metabolism, Curr. Top. Cell. Regul. 1:45–76.Google Scholar
  107. Kun, E., Zimber, P. H., Chang, A. C. Y., Puschendorf, B., and Grunicke, H., 1975, Macromolecular enzymatic product of NAD+ in liver mitochondria, Proc. Natl. Acad. Sci. U.S.A. 72:1736.CrossRefGoogle Scholar
  108. Lane, M. D., Polakis, S. E., and Moss, J., 1975, Acetyl CoA carboxylase, in: Subunit Enzymes (K. E. Ebner, ed.), pp. 181–221, Marcel Dekker, New York.Google Scholar
  109. Le John, H. B., 1968, Unidirectional inhibition of glutamate dehydrogenase by metabolites: A possible regulatory mechanism, J. Biol. Chem. 243:5126.Google Scholar
  110. Levitzki, A., 1975, Subunit interactions in proteins, in: Subunit Enzymes (K. E. Ebner, ed.), pp. 1–41, Marcel Dekker, New York.Google Scholar
  111. Levitzki, A., and Koshland, D. E., Jr., 1972, Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase, Biochemistry 11:241.PubMedCrossRefGoogle Scholar
  112. Levitzki, A., and Koshland, D. E., Jr., 1976, The role of negative cooperativity and half of the sites reactivity in enzyme regulation, Curr. Top. Cell. Regul. 10:1–40.PubMedGoogle Scholar
  113. Levitzki, A., and Schlessinger, J., 1974, Cooperativity in associating proteins. Monomer-dimer equilibrium coupled to ligand binding, Biochemistry 13:5214.PubMedCrossRefGoogle Scholar
  114. Levy, H. R., Raineri, R. R., and Nevaldine, B. H., 1966, On the structure and catalytic function of mammary glucose 6-phosphate dehydrogenase, J. Biol. Chem. 241:2181.PubMedGoogle Scholar
  115. Libertini, L. J., and Smith, S., 1978, Purification and properties of a thioesterase from lactating mammary gland which modifies the product specificity of fatty acid synthetase, J. Biol. Chem. 253:1393.PubMedGoogle Scholar
  116. Linn, T. C., Pettit, F. H., Hucho, F., and Reed, L. J., 1969, A-Keto acid dehydrogenases complex. XI. Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart, and liver mitochondria, Proc. Natl. Acad. Sci. U.S.A. 64:227.PubMedCrossRefGoogle Scholar
  117. McNamara, D. J., and Rodwell, V. W., 1975, Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase, Arch. Biochem. Biophys. 168:378.PubMedCrossRefGoogle Scholar
  118. Maeba, P., and Sanwal, B. D., 1966, The allosteric threonine deaminase of Salmonella. Kinetic model for the native enzyme, Biochemistry 5:525.PubMedCrossRefGoogle Scholar
  119. Maeba, P., and Sanwal, B. D., 1969, Phosphoenolpyruvate carboxylase of Salmonella. Some chemical and allosteric properties, J. Biol. Chem. 244:2549.PubMedGoogle Scholar
  120. Magasanik, B., Prival, M. J., Brenchley, J. E., Tyler, B. M., DeLeo, A. B., Streicher, S. L., Bender, R. A., and Paris, C. G., 1974, Glutamine synthetase as a regulator of enzyme synthesis. Curr. Top. Cell. Regul. 8:119–138.PubMedGoogle Scholar
  121. Mansour, T. E., 1963, Studies on heart phosphofructokinase: Purification, inhibition and activation, J. Biol. Chem. 238:2285.Google Scholar
  122. Mantel, M., and Holzer, H., 1970, Reversibility of the ATP : glutamine synthetase adenyltransferase reaction, Proc. Natl. Acad. Sci. U.S.A. 65:660.PubMedCrossRefGoogle Scholar
  123. Mark, D. E., and Richardson, C. C., 1976, Escherichia coli thioredoxin: A subunit of bacteriophage T7 DNA polymerase, Proc. Natl. Acad. Sci. U.S.A. 73:780.PubMedCrossRefGoogle Scholar
  124. Matthews, B. W., and Bernhard, S. A., 1973, Structure and symmetry of oligomeric enzymes, Annu. Rev. Biophys. Bioeng. 2:257.PubMedCrossRefGoogle Scholar
  125. Meunier, J. C., Buc, J., Navarro, A., and Ricard, J., 1974, Regulatory behavior of monomeric enzymes. 2. A wheat-germ hexokinase as a mnemonical enzyme, Eur. J. Biochem. 49:209.PubMedCrossRefGoogle Scholar
  126. Millar, R. E., and Stadtman, E. R., 1972, Glutamate synthase from Esterichia coli—An iron-sulfide flavoprotein, J. Biol. Chem. 247:7407.Google Scholar
  127. Miyamoto, E., Petzold, G. L., Harris, J. S., and Greengard, P., 1971, Dissociation and concomitant activation of adenosine 3′,5′-monophosphate-dependent protein kinase by histone, Biochem. Biophys. Res. Commun. 44:305.PubMedCrossRefGoogle Scholar
  128. Monod, J., and Jacob, F., 1961, General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation, Cold Spring Harbor Symp. Quant. Biol. 26:389.PubMedCrossRefGoogle Scholar
  129. Monod, J., Changeux, J. P., and Jacob, F., 1963, Allosteric proteins and cellular control systems, J. Mol. Biol. 6:306.PubMedCrossRefGoogle Scholar
  130. Monod, J., Wyman, J., and Changeux, J. P., 1965, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12:88.PubMedCrossRefGoogle Scholar
  131. Moss, J., and Vaughan, M., 1977, Mechanism of action of choleragen. Evidence for ADP-ribosyl transferase activity with arginine as an acceptor, Proc. Natl. Acad. Sci. U.S.A. 74:5440.CrossRefGoogle Scholar
  132. Moss, J., and Vaughan, M., 1978, Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 75:3621.PubMedCrossRefGoogle Scholar
  133. Murphy, T. A., and Wyatt, G. R., 1965, The enzymes of glycogen and trehalose synthesis in silk moth fat body, J. Biol. Chem. 240:1500.PubMedGoogle Scholar
  134. Murray, A. W., Froscio, M., and Rogers, A., 1974, Dissociation of rabbit muscle cyclic AMP-dependent protein kinase into catalytic and regulatory subunits by p-chloromercuribenzoate and methylmercuric chloride, FEBS Lett. 48:238.PubMedCrossRefGoogle Scholar
  135. Neet, K. E., and Ainslie, G. R., 1976, Cooperativity and slow transitions in the regulation of oligomeric and monomeric enzymes, Trends Biochem. Sci. 1:145.Google Scholar
  136. Neurath, H., Walsh, K. A., and Gertler, A., 1973, Inhibition of physiological function by limited proteolysis, in: Metabolic Interconversion of Enzymes 1973 (E. H. Fischer, E. G. Krebs, H. Neurath, and E. R. Stadtman, eds.), pp. 301–312, Springer-Verlag, New York.Google Scholar
  137. Niles, E. G., and Westhead, E. W., 1973, In vitro adenylylation of lysine-sensitive aspartylkinase from E. coli, Biochemistry 12:1723.PubMedCrossRefGoogle Scholar
  138. Nordlie, R. C., 1976, Multifunctional hepatic glucose-6-phosphate and the “tuning” of blood glucose levels, Trends Biochem. Sci. 1:199.Google Scholar
  139. Numa, S., 1974, Regulation of fatty acid synthesis in higher animals, Ergeb. Physiol. 69:53.Google Scholar
  140. Panagou, D., Orr, M. D., Dunstone, J. R., and Blakeley, R. L., 1972, A monomeric, allosteric enzyme with a single polypeptide chain. Ribonucleotide reductase of Lactobacillus leichmannii, Biochemistry 11:2378.PubMedCrossRefGoogle Scholar
  141. Pardee, A. B., 1971, Control of metabolic reactions by feedback inhibition, Harvey Lect. 65:59.PubMedGoogle Scholar
  142. Paulus, H., and Gray, E., 1964, Multivalent feedback inhibitions of aspartokinase in Bacillus polymyxa, J. Biol. Chem. 239:Pc 4008.Google Scholar
  143. Penninckx, M., Simon, J.-P., and Wiame, J.-M., 1974, Interaction between argniase and L-ornithine carbamoyltransferase in Saccharomyces cerevisiae, Eur. J. Biochem. 49:429.PubMedCrossRefGoogle Scholar
  144. Pesce, A., Casoli, C., and Schito, G. C., 1976, Rifampicin-resistant RNA polymerase and NAD transferase activities in coliphage N4 virions, Nature (London) 262:412.CrossRefGoogle Scholar
  145. Pike, M. C., Kredich, N. M., and Snyderman, R., 1978, Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 75:3928.PubMedCrossRefGoogle Scholar
  146. Pogell, B. M., Tanaka, A., and Siddons, R. C., 1968, Natural activators for liver fructose 1,6-diphosphatase and the reversal of adenosine 5′-monophosphate inhibition by muscle phosphofructokinase, J. Biol. Chem. 243:1356.PubMedGoogle Scholar
  147. Pontremoli, S., Grazi, E., and Accorsi, A., 1968, Fructose diphosphatase from rabbit liver. X. Isolation and kinetic properties of the enzyme adenosine monophosphate complex, Biochemistry 7:3628.PubMedCrossRefGoogle Scholar
  148. Purich, D. L., and Fromm, H. J., 1972, A possible role for kinetic reaction mechanism dependent substrate and product effect in enzyme regulation, Curr. Top. Cell. Regul. 6:131–167.Google Scholar
  149. Ratner, D., 1974, Bacteriophage T4 transcriptional control gene 55 codes for a protein bound to Escherichia coli RNA polymerase, J. Mol. Biol. 89:803.PubMedCrossRefGoogle Scholar
  150. Raybin, D., and Flavin, M., 1975, An enzyme tyrosylating a-tubulin and its role in microtubule assembly, Biochem. Biophys. Res. Commun. 65:1088.PubMedCrossRefGoogle Scholar
  151. Reed, L. J., Pettit, F. H., Roche, T. E., Butterworth, P. J., Barrera, C. R., and Tsai, C. S., 1974, Structure, function and regulation of the mammalian pyruvate dephdrogenase complex, in: Metabolic Interconversion of Enzymes 1973 (E. H. Fischer, E. G. Krebs, H. Neurath, and E. R. Stadtman, eds.), pp. 99–116, Springer-Verlag, New York.CrossRefGoogle Scholar
  152. Reeves, R. E., and Sols, A., 1973, Regulation of Escherichia coli phosphofructokinase in situ, Biochem. Biophys. Res. Commun. 50:459.PubMedCrossRefGoogle Scholar
  153. Reitzer, L. J., and Neet, K. E., 1974, Regulatory kinetics of yeast hexokinase in situ, Biochem. Biophys. Acta 341:201.PubMedCrossRefGoogle Scholar
  154. Ricard, J., Meunier, J.-C., and Buc, J., 1974, Regulatory behaviour of monomeric enzymes, Eur. J. Biochem. 49:195.PubMedCrossRefGoogle Scholar
  155. Roach, P. J., and Larner, J., 1976, Regulation of glycogen synthase: A relation of enzymic properties with biological function, Trends Biochem. Sci. 1:110.Google Scholar
  156. Rosen, O. M., Erlichman, J., and Rubin, C. S., 1975, Molecular structure and characterization of bovine heart protein kinase, Adv. Cyclic Nucleotide Res. 5:253.PubMedGoogle Scholar
  157. Rubin, C. S., and Rosen, O. M., 1975, Protein phosphorylation, Annu. Rev. Biochem. 44:831.PubMedCrossRefGoogle Scholar
  158. Rübsamen, H., Khandker, R., and Witzel, H., 1974, Sigmoid kinetics of the monomeric ribonuclease I due to ligand-induced shifts of conformational equilibria, Hoppe Seyler’s Z. Physiol. Chem. 355:687.PubMedCrossRefGoogle Scholar
  159. Sanwal, B. D., 1970, Allosteric controls of amphibolic pathways in bacteria, Bacteriol. Rev. 34:20.PubMedGoogle Scholar
  160. Sanwal, B. D., Meaba, P., and Cook, R. A., 1966, Interaction of macroions and dioxane with the allosteric phosphoenolpyruvate carboxylase, J. Biol. Chem. 241:5177.PubMedGoogle Scholar
  161. Sanwal, B. D., Kapoor, M., and Duckworth, H. W., 1971, The regulation of branched and converging pathways, Curr. Top. Cell. Regul. 3:1–115.Google Scholar
  162. Sarngadharan, M. G., Watanabe, A., and Pogell, B. M., 1969, Binding of adenosine 5′-monophosphate and substrate by rabbit liver fructose 1,6-diphosphatase, Biochemistry 8:1411.PubMedCrossRefGoogle Scholar
  163. Savageau, M. A., 1979, Autogenous and classical regulation of gene expression, in: Biological Regulation and Development (R. F. Goldberger, ed.), Vol. I, pp. 57–108, Plenum Press, New York.CrossRefGoogle Scholar
  164. Sawula, R. V., and Suzuki, I., 1970, Effect of enzyme concentration on the kinetics of D-lactate dehydrogenase from Aerobacter aerogenes, Biochem. Biophys. Res. Commun. 40:1096.PubMedCrossRefGoogle Scholar
  165. Serrano, R., Gancedo, J. M., and Gancedo, C., 1973, Assay of yeast enzymes in situ: A potential tool in regulation studies, Eur. J. Biochem. 34:479.PubMedCrossRefGoogle Scholar
  166. Shapiro, B. M., 1969, The glutamine synthetase deadenylylating enzyme system from Escherichia coli. Resolution into two components, specific nucleotide stimulation, and cofactor requirements, Biochemistry 8:659.PubMedCrossRefGoogle Scholar
  167. Shapiro, B. M., Kingdon, H. S., and Stadtman, E. R., 1967, Regulation of glutamine synthetase. VII. Adenyl glutamine synthetase: A new form of the enzyme with altered regulatory and kinetic properties, Proc. Natl. Acad. Sci. U.S.A. 58:642.PubMedCrossRefGoogle Scholar
  168. Shen, L. C., and Atkinson, D. E., 1970, Regulation of pyruvate dehydrogenase from Escherichia coli. Interactions of adenylate energy charge and other regulatory parameters, J. Biol. Chem. 245:5974.PubMedGoogle Scholar
  169. Shill, J. P., and Neet, K. E., 1975, Allosteric properties and the slow transition of yeast hexokinase, J. Biol. Chem. 250:2259.Google Scholar
  170. Smando, R., Waygood, E. B., and Sanwal, B. D., 1974, Cooperative interaction in the binding of allosteric effectors to phosphoenolypyruvate carboxylase, J. Biol. Chem. 249:182.PubMedGoogle Scholar
  171. Smith, S., and Abraham, S., 1975, The composition and biosynthesis of milk fat, in: Advances in Lipid Research (R. Paoletti and D. Kritchevsky, eds.), Vol. 13, pp. 195–239, Academic Press, New York.Google Scholar
  172. Söderling, T. R., 1975, Regulation of glycogen synthetase. Specificity and stoichiometry of phosphorylation of the skeletal muscle enzyme cyclic 3′,5′-AMP-dependent protein kinase, J. Biol. Chem. 250:5407.PubMedGoogle Scholar
  173. Söderling, T. R., Hickinbottom, J. P., Reimann, E. M., Hunkler, F. L., Walsh, D. A., and Krebs, E. G., 1970, Inactivation of glycogen synthetase and activation of phosphorylase kinase by muscle adenosine 3′,5′-monophosphate-dependent protein, J. Biol. Chem. 245:6317.PubMedGoogle Scholar
  174. Soffer, R. L., 1974, Aminoacyl tRNA transferase, Adv. Enzymol. 40:91.PubMedGoogle Scholar
  175. Sols, A., and Marco, R., 1970, Concentration of metabolites and binding sites. Implication of metabolic regulation, Curr. Top. Cell. Regul. 2:227–273.Google Scholar
  176. Springer, M. S., Goy, M. F., and Adler, J., 1979, Protein methylation in behavioural control mechanism and in signal transduction, Nature (London) 280:279.CrossRefGoogle Scholar
  177. Srere, P. A., 1967, Enzyme concentrations in tissues, Science 158:976.Google Scholar
  178. Stadtman, E. R., 1970, Mechanism of enzyme regulation in metabolism, in: The Enzymes (P. Boyer, ed.), Vol. 1, pp. 398–444, Academic Press, New York.Google Scholar
  179. Stadtman, E. R, and Ginsburg, A., 1974, The glutamine synthetase of Escherichia coli: Structure and control, in: The Enzymes, 3rd ed. (P. D. Boyer, ed.), pp. 755–807, Academic Press, New York.Google Scholar
  180. Stebbing, N., 1974, Precursor pools and endogenous control of enzyme synthesis and activity in biosynthetic pathways, Bacteriol. Rev. 38:1.PubMedGoogle Scholar
  181. Stevens, F. C., Walsh, M., Ho, H. C., Teo, T. S., and Wang, J. H., 1976, Comparison of calcium binding proteins, J. Biol. Chem. 251:4495.PubMedGoogle Scholar
  182. Strong, C. R., Carey, E. M., and Dils, R., 1973, The synthesis of medium-chain fatty acids by lactating rabbit mammary gland studied in vito, Biochem. J., 132:121.PubMedGoogle Scholar
  183. Sweeny, J. R., and Fisher, J. R., 1968, An alternative to allosterism and cooperativity in the interpretation of enzyme kinetic data, Biochemistry 7:561.PubMedCrossRefGoogle Scholar
  184. Takeda, Y., and Larner, J., 1975, Structural studies on rabbit muscle glycogen synthase. II. Limited proteolysis, J. Biol. Chem. 250:8951.PubMedGoogle Scholar
  185. Taketa, K., and Pogell, B. M., 1965, Allosteric inhibition of rat liver fructose 1,6-diphosphate by adenosine-5′monophosphate, J. Biol. Chem. 240:651.PubMedGoogle Scholar
  186. Talkington, C., and Pero, J., 1978, Promoter recognition by phage SPO1-modified RNA polymerase, Proc. Natl. Acad. Sci. U.S.A. 75:1185.PubMedCrossRefGoogle Scholar
  187. Thelander, L., 1973, Physicochemical characterisation of ribonucleoside diphosphate reductase from Escherichia coli, J. Biol. Chem. 248:4591.PubMedGoogle Scholar
  188. Thelander, L., and Reichard, P., 1979, Reduction of ribonucleotides, Annu. Rev. Biochem. 48:133.PubMedCrossRefGoogle Scholar
  189. Titani, K., Cohen, P., Walsh, K., and Neurath, H., 1975, Amino-terminal sequence of rabbit muscle phosphorvlase, FEBS Lett. 55:120.PubMedCrossRefGoogle Scholar
  190. Tomkins, G. M., Yielding, K. L., Curran, J.F., Summers, M. R., and Bitensky, M. W., 1965, The dependence of substrate specificity on the conformation of crystalline glutamate dehydrogenase, J. Biol. Chem. 240:3793.PubMedGoogle Scholar
  191. Trotta, P. P., Pinkus, L. M., Haschemeyer, R. H., and Meister, A., 1974, Reversible dissociation of the monomer of glutamine-dependent carbamyl phosphate synthetase into catalytically active heavy and light subunits. J. Biol. Chem. 249:492.PubMedGoogle Scholar
  192. Ueda, K., Okayama, H., Fukushima, M., and Hayaishi, O., 1975, Purification and analysis of the poly AD Pribose svnthetase system, J. Biochem. (Tokyo) 77:1.Google Scholar
  193. Umbarger, H. E., 1956, Evidence for a negative feed back mechanism on the biosynthesis of isoleucine, Science 123:848.PubMedCrossRefGoogle Scholar
  194. Vagelos, P. R., Alberts, A. W., and Martin, D. B., 1963, Studies on the mechanism of activation of acetyl coenzyme A carboxylase by citrate, J. Biol. Chem. 238:533.PubMedGoogle Scholar
  195. Villar-Palasi, C., and Larner, J., 1960, Insulin-mediated effect on the activity of UDPG-glycogen transglucosvlase of muscle. Biochem. Biophys. Acta 39:171.PubMedCrossRefGoogle Scholar
  196. Walsh, D. A., Perkins, J. P., Brostrom, C. O., Ho, E. G., and Krebs, E. G., 1971, Catalysis of the phosphorylase kinase activation reaction, J. Biol. Chem. 246:1968.PubMedGoogle Scholar
  197. Wang, J. H., and Waisman, D. M., 1979, Calmodulin and its role in the second messenger system, Curr. Top. Cell. Regul. 15: 47–107.PubMedGoogle Scholar
  198. Watterson, D. M., Harrelson, W. G., Jr., Keller, P. M., Sharief, F., and Vanaman, T. C., 1976, Structural similarities between the Ca++-dependent regulatory proteins of 3′:5′-cyclic nucleotide phosphodiesterase and actomyosin ATPase, J. Biol. Chem. 251:4501.PubMedGoogle Scholar
  199. Waygood, E. B., Mort, J., and Sanwal, B. D., 1976, The control of pyruvate kinase of E. coli. III. Binding of substrate and allosteric effectors to the enzyme activated by fructose 1,6-diphosphate, Biochemistry 15:277.PubMedCrossRefGoogle Scholar
  200. Weber, A., and Murray, J. M., 1973, Molecular control mechanisms in muscle contraction, Phys. Rev. 53:612.Google Scholar
  201. Weber, K., 1968, New structural model of E. coli aspartate transcarbamylase and the amino-acid sequence of the regulatory polypeptide chain, Nature (London) 218:1116.CrossRefGoogle Scholar
  202. Weitzman, P. D. J., and Hewson, J. K., 1973, In situ regulation of yeast citrate synthase. Absence of ATP inhibition observed In vitro, FEBS Lett. 36:479.CrossRefGoogle Scholar
  203. Wiame, J.-M., 1971, The regulation of arginine metabolism in Saccharomyces cerevisiae: Exclusion mechanism, Curr. Top. Cell. Regul. 4:1–38.Google Scholar
  204. Wiley, D. C., and Lipscomb, W. N., 1968, Crystallographic determination of symmetry of aspartate transcarbamvlase, Nature (London) 218:1119.CrossRefGoogle Scholar
  205. Woolfolk, C. A., and Stadtman, E. R., 1964, Cumulative feed back inhibition in the multiple end product regulation of glutamine synthetase activity in Escherichia coli, Biochem. Biophys. Res. Commun. 17:313.CrossRefGoogle Scholar
  206. Wright, J. A., and Sanwal, B. D., 1969, Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. II. Control of phosphoenolpyruvate carboxykinase, J. Biol. Chem. 244:1838.PubMedGoogle Scholar
  207. Wright, J. A., and Sanwal, B. D., 1971, Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. IV. Physicochemical study and ligand binding to citrate synthase, J. Biol. Chem. 246:1689.PubMedGoogle Scholar
  208. Wyman, A., and Paulus, H., 1975, Purification and properties of homoserine transacetylase from Bacillus polymyxa, J. Biol. Chem. 250:3897.PubMedGoogle Scholar
  209. Wyman, A., Shelton, E., and Paulus, H., 1975, Regulation of homoserine transacetylase from Bacillus polymyxa, J. Biol. Chem. 250:3897.PubMedGoogle Scholar
  210. Yates, R. A., and Pardee, A. B., 1956, Control of pyrimidine biosynthesis of E. coli by a feed-back mechanism, J. Biol. Chem. 221:757.PubMedGoogle Scholar
  211. Yoshinhara, K., Tanigawa, Y., Burzio, L., and Koide, S. S., 1975, Evidence for adenosine diphosphate ribosylation of Ca2+, Mg2+-dependent endonuclease, Proc. Natl. Acad. Sci. U.S.A. 72:289.CrossRefGoogle Scholar
  212. Zillig, W., Fujiki, H., Blum, W., Janekovie, D., Schweiger, M., Rahmsdorf, H. J., Ponta, H., and Kauffmann, M. H., 1975, In vivo and In vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by bacteriophage T7 induced protein kinase, Proc. Natl. Acad. Sci. U.S.A. 72:2506.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • B. D. Sanwal
    • 1
  1. 1.Department of BiochemistryUniversity of Western OntarioCanada

Personalised recommendations