Advertisement

Determination of Vitamin B-6 Compounds by Semiautomated Continuous-Flow and Chromatographic Methods

  • Jesse F. GregoryIII
  • James R. Kirk

Abstract

The development of instrumental methods for the quantitative analysis of the various vitamin B-6 compounds has been the subject of extensive research. The need for alternative analytical methods stems largely from the limitations of many of the conventional procedures and the requirement for accurate, rapid, and simple methods for food analysis, research, and nutritional assessment purposes. Microbiological methods for the biologically active B-6 vitamers are often limited by the cumbersome nature of the analysis, poor precision, and potential variation in growth response. Enzymatic procedures for the vitamin B-6 coenzymes (pyridoxal 5’-phosphate, PLP and pyridoxamine 5’-phosphate, PMP), while extremely sensitive, are not well suited for multiple routine analyses and may be subject to certain interferences. Likewise, conventional methods for the determination of 4-pyridoxic acid (4PA), the primary excretory form of vitamin B-6, have not been widely employed because of their lengthy nature.

Keywords

Potassium Phosphate Reverse Phase HPLC Breakfast Cereal Total Vitamin Fluorometric Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Fujita, A., Masuura, K. & Fujino, K. (1955) Fluorometric determination of vitamin B-6. I. Determination of pyridoxine. J. Vitaminol. 1, 267–271.CrossRefGoogle Scholar
  2. 2.
    Fujita, A., Fujita, D. & Fujino, K. (1955) Fluorometric determination of vitamin B-6. II. Determination of pyridoxamine. J. Vitaminol. 1, 272–278.Google Scholar
  3. 3.
    Fujita, A., Fujita, D. & Fujino, K. (1955) Fluorometric determination of vitamin B-6. III. Fractional determination of pyridoxal and 4-pyridoxic acid. J. Vitaminol. 1, 279–289.CrossRefGoogle Scholar
  4. 4.
    Bonavita, V. (1960) The reaction of pyridoxal 5-phosphate with cyanide and its analytical use. Arch. Biochem. Biophys. 88, 366–372.Google Scholar
  5. 5.
    Hennessy, D. J., Steinberg, A. M., Wilson, G. S. & Keaveney, W. P. (1960) Fluorometric determination of added pyridoxine in enriched white flour and in bread baked from it. J. Assoc. Off. Agric. Chem. 43, 765–768.Google Scholar
  6. 6.
    Toepfer, E. W., Polansky, M. M. & Hewston, E. M. (1961) Fluorometric determination of pyridoxamine by conversion to pyridoxal cyanide compound. Anal. Biochem. 2, 463–469.Google Scholar
  7. 7.
    Polansky, M. M., Camarra, R. T. & Toepfer, È7 W. (1964) Pyridoxine determined fluorometrically as pyridoxal cyanide compound. J. Assoc. Off. Agric. Chem. 47, 827–828.Google Scholar
  8. 8.
    Contractor, S. F. & Shane, 137- (1968) Estimation of vitamin B-6 compounds in human blood and urine. Clin. Chim. Acta 21, 71–77.Google Scholar
  9. 9.
    Ohishi, N. & Fukui, S. (1968) Further study on the reaction products of pyridoxal and pyridoxal 5’-phosphate with cyanide. Arch. Biochem. Biophys. 128, 606–610.Google Scholar
  10. 10.
    Loo, Y. H. & Badger, L. -1969) Spectrofluorometric assay of vitamin B-6 analogues in brain tissue. J. Neurochem. 16, 801–804.CrossRefGoogle Scholar
  11. 11.
    Takanashi, S., Matsunaga, I. & Tamura, Z. (1970) Fluorometric determination of pyridoxal and its 5’-phosphate in biological materials. J. Vitaminol. 16, 132–136.CrossRefGoogle Scholar
  12. 12.
    Tamura, Z. & Takanashi, S.---(1970) Fluorometric determination of pyridoxal and pyridoxal 5’-phosphate in biological materials by the reaction with cyanide. In: Methods in Enzymology, (McCormick, D. B. & Wright, L. D., eds.), vol. 18A, pp. 471475, Academic Press, New York.Google Scholar
  13. 13.
    Columbini, C. E. & McCoy, E. E. (1970) Rapid thin-layer electrophoretic separation and estimation of all vitamin B-6 compounds and of some 5-hydroxyindoles. Anal. Biochem. 34, 451–458.Google Scholar
  14. 14.
    Masukawa, K., Nakama, A., Monaka, H., Kondo, T. & Okumura, K. (1971) Differential determination of pyridoxal, pyridoxamine, pyridoxal 5’-phosphate, and pyridoxamine 5’-phosphate in biological materials. Vitamins 44, 168–175.Google Scholar
  15. 15.
    Fiedlerova, V. & Davidek, J. (1974) Fluorometric determination of pyridoxal in dried milk. Z. Lebensm. Unters.-Forsch. 155, 277–281.CrossRefGoogle Scholar
  16. 16.
    Chin, Y.-P. (1975) Chromatographic separation and fluorometric determination of pyridoxal, pyridoxamine, and pyridoxine in food system. M.S. Thesis, pp. 1–79, Michigan State University, East Lansing.Google Scholar
  17. 17.
    Gregory, J. F. & Kirk, J. R. (1977) Improved chromatographic separation and fluorometric determination of vitamin B-6 compounds in foods. J. Food Sci. 42, 1073–1076.CrossRefGoogle Scholar
  18. 18.
    Adams, E. (1979) Fluorometric determination of pyridoxal phosphate in enzymes. In: Methods in Enzymology, (McCormick, D. B. & Wright, L. D., eds.), vol. 62, pp. 407–410, Academic Press, New York.Google Scholar
  19. 19.
    Srivastava, S. K. & Beutler, E. (1973) A new fluorometric method for the determination of pyridoxal 5’-phosphate. Biochim. Biophys. Acta 304, 765–773.Google Scholar
  20. 20.
    Spector, R. (1978) Vitamin B-6 transport in the central nervous system: in vivo studies. J. Neurochem. 30, 881–887.CrossRefGoogle Scholar
  21. 21.
    Chauhan, M. S. & Dakshinamurti, K. (1979) Fluorometric assay of pyridoxal. In: Methods in Enzymology, (McCormick, D. B. & Wright, L. D., eds.), vol. 62, pp. 405–407, Academic Press, New York.Google Scholar
  22. 22.
    Gregory, J. F. & Kirk, J. R. (1978) Assessment of roasting effects on vitamin B-6 stability and bioavailability in dehydrated food systems. J. Food Sci. 43, 1585–1589.CrossRefGoogle Scholar
  23. 23.
    Gregory, J. F. & Kirk, J. R. (1978 f Assessment of storage effects on vitamin B-6 stability and bioavailability in dehydrated food systems. J. Food Sci. 43, 1801–1815.CrossRefGoogle Scholar
  24. 24.
    Polansky, M. M. & Toepfer, E. W. (1969) Vitamin B-6 components in some meats, fish, dairy products, and commercial infant formulas. J. Agric. Food Chem. 17, 1394–1397.CrossRefGoogle Scholar
  25. 25.
    Williams, A. K. (1974) Vitamin B-6: gas-liquid chromatog- raphy of pyridoxol, pyridoxal, and pyridoxamine. J. Agric. Food Chem. 22, 107–109.CrossRefGoogle Scholar
  26. 26.
    Korytnyk, W (1970) Gas chromatography of vitamin B-6. In: Methods in Enzymology, (McCormick, D. B. & Wright, L. D., eds.), vol. 18A, pp. 500–504, Academic Press, New York.Google Scholar
  27. 27.
    Sheppard, A. J. & Prosser, A. R. (1970) Gas chromatography of vitamin B-6. In: Methods in Enzymology, (McCormick, D. B. & Wright, L. D., eds.), vol 18A, pp. 494–500, Academic Press, New York.Google Scholar
  28. 28.
    Haskell, B. E. (1968) Gas liquid chromatographic analysis of pyridoxal phosphate. Fed. Proc. 27, 554 (abstract).Google Scholar
  29. 29.
    Tiselius, H.-G. (1972) A chromatographic separation of the different forms of vitamin B-6. Clin. Chim. Acta 40, 319–324.CrossRefGoogle Scholar
  30. 30.
    Callmer, K. & Davies, L. (1974) Separation and determination of vitamin B-1, B-2, B-6, and nicotinamide in commercial vitamin preparations using high performance cation-exchange chromatography. Chromatographia 7, 644–650.CrossRefGoogle Scholar
  31. 31.
    Williams, A. K. & Cole, P. D. (1975) Vitamin B-6: ion exchange chromatography of pyridoxal, pyridoxol, and pyridoxamine. J. Agric. Food Chem. 23, 915–916. 168 J. F. GREGORY III AND J. R. KIRKCrossRefGoogle Scholar
  32. 32.
    Yasumoto, K., Tadera, K., Tsuji, H. & Mitsuda, H. (1975) Semi-automated system for analysis of vitamin B-6 complex by ion-exchange column chromatography. J. Nutr. Sci. Vitaminol. 21, 117–127.CrossRefGoogle Scholar
  33. 33.
    Wong, F. F. (1978) Analyses of vitamin B-6 in extractives of food materials by high-performance liquid chromatography. J. Agric. Food Chem. 26, 1444–1446.CrossRefGoogle Scholar
  34. 34.
    Thompson, J. N. (197 T Analysis of vitamins in foods using high performance liquid chromatography. In: Symposium Proceedings: Application of High Pressure Liquid Chromatographic Methods for Determination of Fat Soluble Vitamins A, D, E, and K in Foods and Pharmaceuticals, pp. 62–83. Presented by Association of Vitamin Chemists in conjunction with Waters Associates.Google Scholar
  35. 35.
    Hill, R. B. H., Shaw, C. G. & Day, W. R. (1977) Analysis of water soluble vitamins by high pressure liquid chromatography. J. Chromatogr. Sci. 15, 262–266.Google Scholar
  36. 36.
    Vanderslice, J. T., Stewart, K. K. & Yarmas, M. M. (1979) Liquid chromatographic separation and quantification of B-6 vitamers and their metabolite, pyridoxic acid. J. Chromatogr. 176, 280–285.CrossRefGoogle Scholar
  37. 37.
    Vanderslice, J. T., Maire, C. E. & Yakupkovic, J. (1980) High performance liquid chromatographic analysis of vitamin B-6 in ready-to-eat breakfast cereals. Paper #201, presented at the 40th annual meeting of the Institute of Food Technologists, New Orleans.Google Scholar
  38. 38.
    Gregory, J. F. & Kirk, J. R. (1979) Determination of urinary 4-pyridoxic acid using high performance liquid chromatography. Am. J. Clin. Nutr. 32, 879–883.Google Scholar
  39. 39.
    Gregory, J. F. (1980) Determination of pyridoxal 5’-phosphate as the semicarbazone derivative using high-performance liquid chromatography. Anal. Biochem. 102, 374–379.Google Scholar
  40. 40.
    Korytnyk, W., Hakala, M. T., Potti, P. G. G., Angelino, N. & Chang, S. C. (1976) On the inhibitory activity of 4-vinyl analogues of pyridoxal: enzyme and cell culture studies. Biochemistry 15, 5458–5466.CrossRefGoogle Scholar
  41. 41.
    Gregory, J. F (1980) Effects of E-pyridoxyllysine and related compounds on liver and brain pyridoxal kinase and liver pyridoxamine (pyridoxine) 5’-phosphate oxidase. J. Biol. Chem. 255, 2355–2359.Google Scholar
  42. 42.
    Allenmaric, S., Hjelm, E. & Larsson-Cohn, U. (1978) New method for quantitative analysis of pyridoxal-5’-phosphate in biological material. J. Chromatogr. 146, 485–489.CrossRefGoogle Scholar
  43. 43.
    Krstulovic, A. M. & Matzura, C.-71979) Rapid assay for tryptophanase using reversed-phase high-performance liquid chromatography. J. Chromatogr. 176, 217–224.CrossRefGoogle Scholar
  44. 44.
    Suelter, C. H., Wang, J. & Snell, E. E. (1976) Application of a direct spectrophotometric assay employing a chromogenic substrate for tryptophanase to the determination of pyridoxal and pyridoxamine 5’-phosphates. Anal. Biochem. 76, 221–232.Google Scholar
  45. 45.
    Waters Associates, Inc. (1976) Liquid Chromatography School Manual, pp. LS23–LS28, Waters Associates, Inc., Milford, MA.Google Scholar
  46. 46.
    Wittmer, D. P. & Haney, W. G. (1976) Water-soluble vitamins. In: GLC and HPLC Analysis of Therapeutic Agents (Tsuji, K. & Morozowitch, W., eds.), Ch. 29, Dekker, New York.Google Scholar
  47. 47.
    Williams, A. K. (1979) High-performance chromatography of vitamin B-6. In: Methods in Enzymology (McCormick, D. B. & Wright, L. D., eds.), vol. 62, pp. 415–422, Academic Press, New York.Google Scholar
  48. 48.
    Kirchmeier, R. L. & Upton, R. P. (1978) Simultaneous determination of niacin, niacinamide, pyridoxine, thiamine, and riboflavin in multivitamin blends by ion-pair high-pressure liquid chromatography. J. Pharmaceut. Sci. 67, 1444–1446.CrossRefGoogle Scholar
  49. 49.
    Horvath, C., Melander, W. & Molnar, I. (1975 Solvophobic interactions in liquid chromatography with nonpolar stationary phases. J. Chromatogr. 125, 129–156.Google Scholar
  50. 50.
    Horvath, C., Melander, W. & Molnar, I. (1977) Liquid chromatography of ionogenic substances with nonpolar stationary phases. Anal. Chem. 49, 142–154.CrossRefGoogle Scholar
  51. 51.
    Gregory, J. F. (19807Comparison of high performance liquid chromatographic and Saccharomyces uvarum methods for the determination of vitamin B-6 in fortified breakfast cereals. J. Agric. Food Chem. 28, 486–489.Google Scholar
  52. 52.
    Gregory, J. F. (19807 Bioavailability of vitamin B-6 in nonfat dry milk and a fortified rice breakfast cereal product. J. Food Sci. 45, 84–86.Google Scholar
  53. 53.
    Lim, K. L., Young, R. W. & Driskell, J. A. (1980) Separation of vitamin B-6 components by high-performance liquid chromatography. J. Chromatogr. 188, 285–288.CrossRefGoogle Scholar
  54. 54.
    Yoshida, T., Yunoki, N., Nakazima, Y., Kaito, T. & Anmo, T. (1978) Simultaneous determination of the vitamin B-6 group in blood by high-performance liquid chromatography (HPLC). J. Pharmaceut. Soc. Japan 98, 1319–1326.Google Scholar
  55. 55.
    Gregory, J. F. (1980) Effects of e-pyridoxyllysine bound to dietary protein on the vitamin B-6 status of rats. J. Nutr. 110, 995–1005.Google Scholar
  56. 56.
    Gregory, J. F., Manley, D. & Kirk, J. R. (1980) Determination of total vitamin B-6 in animal tissues by reverse phase liquid chromatography. J. Agric. Food Chem. (submitted for publication).Google Scholar
  57. 57.
    Brin, M. & Thiele, V. F. (1967) Relationships between vitamin B-6 vitamer content and the activities of two transaminase enzymes in rat tissues at varying intake levels of vitamin B-6. J. Nutr. 93, 213–221. 170J. F. GREGORY III AND J. R. KIRKGoogle Scholar
  58. 58.
    Johansson, S., Lindstedt, S. & Tiselius, H.-G. (1968) Metab- olism of (3H8) pyridoxine in mice. Biochemistry 7, 2327–2332.CrossRefGoogle Scholar
  59. 59.
    Johansson, S., Lindstedt, S. & Tiselius, H.-G. (1974) Metab- olic interconversions of different forms of vitamin B-6. J. Biol. Chem. 249, 6040–6046.Google Scholar
  60. 60.
    Thiele, V. F. & Brin, M. (1966) Chromatographic separation and microbiologic assay of vitamin B-6 in tissues from normal and vitamin B-6-depleted rats. J. Nutr. 90, 347–353.Google Scholar
  61. 61.
    Thiele, V. F. & Brin, M. (1968) Availability of vitamin B-6 vitamers fed orally to Long-Evans rats as determined by tissue transaminase activity and vitamin B-6 assay. J. Nutr. 94, 237–242.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Jesse F. GregoryIII
    • 1
  • James R. Kirk
    • 1
  1. 1.Food Science and Human Nutrition DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations