Advertisement

Vitamin B-6 and Sulfur Amino Acid Metabolism

  • John A. Sturman

Abstract

Vitamin B-6, in the form of pyridoxal 5- phosphate, is the coenzyme required by many of the enzymes involved in the metabolism of sulfur-containing amino acids (Fig. 1). Methionine, cyst(e)ine, and taurine, of the chemicals listed in this scheme, are generally available in the diet. Methionine is an essential amino acid for mammals, although the requirement can be spared to some extent by cystine. Cyst(e)ine is not generally an essential amino acid for mammals, since adequate amounts may be produced from methionine via the transsulfuration pathway, although it may be essential for a period after birth in some species as a result of the postnatal development of cystathionase. Taurine is an aminosulfonic acid whose role in development and nutrition has been the subject of much recent research and debate. It is an essential nutrient for the cat and kitten, and may be for some primates, including man.

Keywords

Culture Skin Fibroblast Responsive Patient Lymphoid Cell Line Transsulfuration Pathway Pyridoxine Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Brinkley, F. (1950) Synthesis of cystathionine by preparations from rat liver. J. Biol. Chem. 191, 531–534.Google Scholar
  2. 2.
    Braunstein, A. E., Goryachenkova, E. V. Lac, N. D. (1969) Reactions catalyzed by serine sulfhydrase from chicken liver. Biochim. Biophys. Acta 171, 366–368.Google Scholar
  3. 3.
    Braunstein, A. E., Goryachenkova, E. V., Tolosa, E. A., Willhardt, I. H. Yefremova, L. L. (1971) Specificity and some other properties of liver serine sulphhydrase: Evidence for its identity with cystathionine f3-synthase. Biochim. Biophys. Acta 242, 247–260.Google Scholar
  4. 4.
    Matsua, Y Greenberg, D. M. (1959) A crystalline enzyme that cleaves homoserine and cystathionine. IV. Mechanism of action, reversibility, and substrate specificity. J. Biol. Chem. 234, 516–519.Google Scholar
  5. 5.
    Wong, P.W.K., Schwarz, V. Komrower, G. M. (1968) The biosynthesis of cystathionine in patients with homocystinuria. Pediat. Res. 2, 149–160.Google Scholar
  6. 6.
    Chatagner, F., Tixier, M. Portemer, C. (1969) Biosynthesis of cystathionine from homoserine and cysteine by rat liver cystathionase. FEBS Letters 4, 231–233.Google Scholar
  7. 7.
    Gaull, G. E., Wada, Y., Schneidman, K., Rassin, D. K., Tallan, H. H. Sturman, J. A. (1971) Homocystinuria: Observations on the biosynthesis of cystathionine and homolanthionine. Pediat. Res. 5, 265–273.Google Scholar
  8. 8.
    Tallan, H. H., Sturman, J. A., Pascal, T. A.Gaull, G. E. (1974) Cystathionine y-synthesis from homocysteine and cysteine by mammalian tissue. Biochem. Med. 9, 90–101.Google Scholar
  9. 9.
    Mudd, S. H., Finkelstein, J. D., Irreverre, F Laster, L. (1965) Transsulfuration in mammals: Microassays and tissue distributions of three enzymes of the pathway. J. Biol. Chem. 240, 4382–4392.Google Scholar
  10. 10.
    Sturman, J. A., Rassin, D. K. Gaull, G. E. (1970) Distri- bution of transsulfuration enzymes in various organs and species. Int. J. Biochem. 1, 251–253.Google Scholar
  11. 11.
    Uhlendorf, B. W. Mudd, S. H. (1968) Cystathionine synthase in tissue culture derived from human skin: Enzyme defect in homocystinuria. Science 160, 1007–1009.Google Scholar
  12. 12.
    Goldstein, J. L., Campbell, B. K. Gartler, S. M. (1972) Cystathionine synthase activity in human lymphocytes: Induction by phytohemagglutinin. J. Clin. Invest. 51, 1034–1037.Google Scholar
  13. 13.
    Fleisher, L. D., Beratis, N. C., Hirschorn, K. Gaull, G. E. (1972) Detection of cystathionine synthase in long-term lymphoid-cell lines. Lancet 2, 482.Google Scholar
  14. 14.
    Sturman, J. A., Gaull, G. E. Raiha, N. (1970) Absence of cystathionase in human fetal liver: Is cystine essential? Science 169, 74–76.Google Scholar
  15. 15.
    Gaull, G. E., Sturman, J. A. Raiha, N.C.R. (1972) Develop- ment of mammalian sulfur metabolism: Absence of cystathionase in human fetal tissues. Pediat. Res. 6, 538–547.Google Scholar
  16. 16.
    Sturman, J. A., Gaull, G. E. Niemann, W. H. (1976) Cystathionine synthesis and degradation in brain, liver and kidney of the developing monkey. J. Neurochem. 26, 457–463.Google Scholar
  17. 17.
    Sturman, J. A. Gaull, G. E. (1978) Methionine and poly- amine metabolism in the brain and liver of the developing human and rhesus monkey. Adv. Polyamine Res. 2, 213–240.Google Scholar
  18. 18.
    Kashiwamata, S. (1971) Subcellular localization of cystathionine synthase in rat brain. FEES Letter 19, 69–71.CrossRefGoogle Scholar
  19. 19.
    Kashiwamata, S. (1971) Brain cystathionine synthase: Vitamin B-6 requirement for its enzymic reaction and changes in enzymic activity during early development of rats. Brain Res. 30, 185–192.CrossRefGoogle Scholar
  20. 20.
    Rassin, D. K. Gaull, G. E. (1975) Subcellular distribution of enzymes of transmethylation and transsulphuration in rat brain. J. Neurochem. 24, 969–978.Google Scholar
  21. 21.
    Brown, F. C. Gordon, P. H. (1970) Cystathionine synthase from rat liver: partial purification and properties. Can. J. Biochem. 49, 484–491.Google Scholar
  22. 22.
    Kashiwamata, S. Greenberg, D. M. (1970) Studies on cystathionine synthase of rat liver: Properties of the highly purified enzyme. Biochim. Biophys. Acta 212 488–500.Google Scholar
  23. 23.
    Kimura, H. Nakagawa, H. (1970) Studies on cystathionine synthetase: Characteristics of purified rat liver enzyme. J. Biochem. 69, 711–723.Google Scholar
  24. 24.
    Kim. Y. J. Rosenberg, L. E. (1974) On the mechanism of pyridoxine responsive homocystinuria. II. Properties of normal and mutant cystathionine f3-synthase from cultured fibroblasts. Proc. Nat. Acad. Sci. 71, 4821–4825.Google Scholar
  25. 25.
    Porter, P. N., Grishaver, M. S. Jones, O. W. (1974) Characterization of human cystathionine -synthase: Evidence for the identity of human L-serine dehydratase and cystathionine ß-synthase. Biochim. Biophys. Acta 364 128–139.Google Scholar
  26. 26.
    Tudball, N. Reed, M. A. (1975) Purification and properties of cystathionine synthase from human liver. Biochem. Biophys. Res. Comm. 67, 550–555.Google Scholar
  27. 27.
    Kraus, J., Packman, S., Fowler, B. Rosenberg, L. E. (1978) Purification and properties of cystathionine 13-synthase from human liver: Evidence for identical subunits. J. Biol. Chem. 253, 6523–6528.Google Scholar
  28. 28.
    Kashiwamata, S. Kotake, Y. (1970) Studies of cystathionine synthase of rat liver: Dissociation into two components by sodium dodecyl sulfate electrophoresis. Biochim. Biophys. Acta 212 501–503.Google Scholar
  29. 29.
    Ansell, P.R.J. Tudball, N. (1977) The existence of human liver cystathionine is-synthase in multiple molecular forms. Biochim. Biophys. Acta 483, 443–451.Google Scholar
  30. 30.
    Finkelstein, J. D., Mudd, S. H., Irreverre, F. Laster, L. (1964) Homocystinuria due to cystathionine synthetase deficiency: The mode of inheritance. Science 146, 785–787.Google Scholar
  31. 31.
    Gaull, G.E., Tallan, H.H., Lajtha, A. Rassin, D.K. (1975) Pathogenesis of brain dysfunction in inborn errors of amino acid metabolism. In: Biology of Brain Dysfunction ( Gaull, G. E., ed.), vol. 3, pp. 47–143, Plenum Press, NY.CrossRefGoogle Scholar
  32. 32.
    Mudd, S. H., Finkelstein, J. D., Irreverre, F. Laster, L. (1964) Homocystinuria: An enzymatic defect. Science 143, 1443–1445.Google Scholar
  33. 33.
    Gaull, G. E., Rassin, D. K. Sturman, J. A. (1969) Enzymatic and metabolic studies of homocystinuria: Effects of pyridoxine. Neuropadiatrie 1, 199–226.Google Scholar
  34. 34.
    Griffiths, R. Tudball, N. (1976) Studies on the use of skin fibroblasts for the measurement of cystathionine synthase activity with respect to homocystinuria. Clin. Chim. Acta 83, 157–162.Google Scholar
  35. 35.
    Mudd, S. H., Edwards, W. A., Loeb, P. M., Brown, M. S. Laster, L. (1970) Homocystinuria due to cystathionine synthase deficiency: The effect of pyridoxine. J. Clin. Invest. 49, 1762–1773.Google Scholar
  36. 36.
    Griffiths, R. Tudball, N. (1977) The molecular defect in a case of (Cystathionine ß-synthase)-deficient homocystinuria. Eur. J. Biochem. 74, 269–273.Google Scholar
  37. 37.
    Gaull, G. E. Sturman, J. A. (1971) Vitamin B-6 dependency in homocystinuria. Brit. Med. J. 3, 532–533.Google Scholar
  38. 38.
    Gaull, G., Sturman, J. A. Schaffner, F. (1974) Homocystinuria due to cystathionine synthase deficiency: Enzymatic and ultrastructural studies. J. Pediat. 84, 381–390.Google Scholar
  39. 39.
    Fleisher, L. D., Tallan, H. H., Beratis, N. G., Hirschhorn, K. Gaull, G. E. (1973) Cystathionine synthase deficiency: Heterozygote detection using cultured skin fibroblasts. Biochem. Biophys. Res. Comm. 55, 38–44.Google Scholar
  40. 40.
    Gerritsen, T. Waisman, H. A (1964) Homocystinuria: Absence of cystathionine in the brain. Science 145, 588.Google Scholar
  41. 41.
    Brenton, D. P., Cusworth, D. C. Gaull, G. E. 1965 ) Homo- cystinuria: Biochemical studies of tissues including a comparison with cystathioninuria. Pediatrics 35, 50–56.Google Scholar
  42. 42.
    Griffiths, R. Tudball, N. (1976) Observations on the fate of cystathionine in rat brain. Life Sci. 19, 1217–1223.Google Scholar
  43. 43.
    Tudball, N. Beaumone, A. (1979) Studies on the neuro-chemical properties of cystathionine. Biochim. Biophys. Acta 588, 285–293.Google Scholar
  44. 44.
    Rassin, D. K., Longhi, R. C. Gaull, G. E. (1977) Free amino acids in liver of patients with homocystinuria due to cystathionine synthase deficiency: Effects of vitamin B-6. J. Pediat. 91, 574–577.Google Scholar
  45. 45.
    Tada, K., Yoshida, T. Arakawa, T. (1970) Free amino acid pattern in the liver from the patients with amino acid disorders: Postmortem diagnosis of inborn errors of amino acid metabolism. Tohoku J. Exp. Med. 101, 223–226.Google Scholar
  46. 46.
    Kang, S.-S., Wong, P.W.K. Becker, N. (1979) Protein-bound homocyst(e)ine in normal subjects and in patients with homocystinuria. Pediat. Res. 13, 1141–1143.Google Scholar
  47. 47.
    Barber, G. W. Spaeth, G. L. (1967) Pyridoxine therapy in homocystinuria. Lancet 1, 337.CrossRefGoogle Scholar
  48. 48.
    Yoshida, T., Tada, K., Yókoyama, Y. Arakawa, T. (1968) Homocystinuria of vitamin B-6 dependent type. Tohoku J. Exp. Med. 96, 235–242.Google Scholar
  49. 49.
    Barber, G. W. Spaeth, G. L. (1969) The successful treatment of homocystinuria with pyridoxine. J. Pediat. 75, 463–478.Google Scholar
  50. 50.
    Carson, N.A.J. Carre, I. J. (1969) Treatment of homocystinuria with pyridoxine: A preliminary study. Arch. Dis. Child. 44, 387–392.Google Scholar
  51. 51.
    Hagberg, B., Hambraeus, L. Hamfelt, A. (1969) Pyridoxine in homocystinuria. Lancet 2, 271.CrossRefGoogle Scholar
  52. 52.
    Shih, V. E. Efron, M. (1970) Pyridoxine-unresponsive homocystinuria. New Eng. J. Med. 283 1206–1208.Google Scholar
  53. 53.
    Kelly, S. Copeland, W. (1968) A hypothesis on the homocystinuric’s response to pyridoxine. Metabolism 17, 794–795.Google Scholar
  54. 54.
    Seashore, M. R., Durant, J. L. Rosenberg, L. E. (1972) Studies of the mechanism of pyridoxine-responsive homocystinuria. Pediat. Res. 6, 187–196.Google Scholar
  55. 55.
    Longhi, R. C., Fleisher, L7 D., Tallan, H. H. Gaull, G. E. (1977) Cystathionine (3-synthase deficiency: a qualitative abnormality of the deficient enzyme modified by vitamin B-6 therapy. Pediat. Res. 11, 100–103.Google Scholar
  56. 56.
    Rassin, D. K., Longhi, R. C., Sternowsky, H. J., Sturman, J. A. Gaull, G. E. (1977) Homocysteine and cysteine loads in patients with homocystinuria due to cystathionine synthase deficiency: Effects of vitamin B-6. Clin. Chim. Acta 79, 197–210.Google Scholar
  57. 57.
    Fowler, B., Kraus, J., Packman, S. Rosenberg, L. E. (1978) Homocystinuria: Evidence for three distinct classes of cystathionine 13-synthase mutants in cultured fibroblasts. J. Clin. Invest. 61, 645–653.Google Scholar
  58. 58.
    Fleisher, L. D., Longhi, R., Tallan, H. H. Gaull, G. E. (1978) Cystathionine f3-synthase deficiency: Differences in thermostability between normal and abnormal enzyme from cultured human cells. Pediat. Res. 12, 293–296.Google Scholar
  59. 59.
    Radcliffe, B. C. Egan, A. R. (1974T A survey of methionine adenosyltransferase and cystathionine y-lyase activities in ruminant tissues. Austr. J. Biol. Sci. 27, 465–471.Google Scholar
  60. 60.
    Pascal, T. A., Gaull, G. E., Beratis, N. G., Gillam, B. M.Google Scholar
  61. Tallan, H. H. Hirschhorn, H. (1975) Vitamin B-6-responsiveGoogle Scholar
  62. and -unresponsive cystathioninuria: Two variant molecular forms. Science 190, 1209–1211.Google Scholar
  63. 61.
    Bittles, A. H. Carson, N. A. (1974) Cystathionase deficiency in fibroblast cultures from a patient with primary cystathioninuria. J. Med. Genet. 11, 121–122.Google Scholar
  64. 62.
    Pascal, T. A., Gillam, B. M. Gaull, G. E. (1972) Cysta- thionase: Immunochemical evidence for absence from human fetal liver. Pediat. Res. 6, 773–778.Google Scholar
  65. 63.
    Heinonen, K. (1973) Studies on cystathionase activity in rat liver and brain during development. Biochem. J. 136, 1011–1015.Google Scholar
  66. 64.
    Deme, D., Durieu-Trautmann, 0. Chatagner, F. (1971) The thiol groups of rat liver cystathionase. Eur. J. Biochem. 20, 269–275.Google Scholar
  67. 65.
    Pascal, T. A., Tallan, H. H. Gillam, B. M. (1972) Hepatic cystathionase: Immunochemical and electrophoretic studies of the human and rat forms. Biochim. Biophys. Acta 285 48–59.Google Scholar
  68. 66.
    Brown, F. C. DeFoor, M. C. (1974) y-Cystathionase of rat liver: The role of sulfhydryl groups in the catalytic function. Eur. J. Biochem. 46, 317–322.Google Scholar
  69. 67.
    Brown, F. C. (1975) y-Cystathionase of rat liver: Effects of pyridoxal phosphate and other compounds on reaction rates. Arch. Biochem. Biophys. 171, 378–384.Google Scholar
  70. 68.
    Bikel, I., Pavlatos, T. N. Livingston, D. M. (1978) Purification and subunit structure of mouse liver cystathionase. Arch. Biochem. Biophys. 186, 168–174.Google Scholar
  71. 69.
    Loiselet, J. Chatagner, F. (1966) Amino acid composition of “ethionine-induced” cystathionase of rat liver. Biochim. Biophys. Acta 130, 180–183.Google Scholar
  72. 70.
    Deme, D. Chatagner, F. (1972) Etude du centre actif de 1’homoserine dehydratase du foie de rat. Biochim. Biophys. Acta 258, 643–654.Google Scholar
  73. 71.
    Harris, H., Penrose, L. S. Thomas, D.H.H. (1959) Cysta- thioninuria. Ann. Human Gen. 23, 442–453.Google Scholar
  74. 72.
    Frimpter, G. W. (1965) Cystathioninuria: Nature of the defect. Science 149, 1095–1096.Google Scholar
  75. 73.
    Perry, T. L., Robinson, G. C., Teasdale, J. M. Hansen, S. (1967) Concurrence of cystathioninuria, nephrogenic diabetes insipidus and severe anemia. New Eng. J. Med. 276, 721–725.Google Scholar
  76. 74.
    AvRuskin, T. W. Kang, E. S. (1974) Cystathioninuria, mental retardation and juvenile diabetes mellitus. Am. J. Dis. Child. 127, 250–253.Google Scholar
  77. 75.
    Scott, R. C., Dassell, S. W., Clark, S. H., Chiang-Teng, C. Swedberg, K. R. (1970) Cystathioninemia: A benign genetic condition. J. Pediat. 76, 571–577.Google Scholar
  78. 76.
    Lyon, I.C.T., Procopis, P. G. Turner, B. (1971) Cysta- thioninuria in a well baby population. Acta Paediat. Scand. 60, 324–328.Google Scholar
  79. 77.
    Perry, T. L., Hardwick, D. F., Hansen, S., Love, D. L. Isreals, S. (1968) Cystathioninuria in two healthy siblings. New Eng. J. Med. 278, 590–592.Google Scholar
  80. 78.
    Finkelstein, J. D., Mudd, S. H., Irreverre, F. Laster, L. (1966) Deficiencies of cystathionase and homoserine dehydratase activities in cystathioninuria. Biochemistry 55, 865–872.Google Scholar
  81. 79.
    Shaw, K.N.F., Lieberman, E., Koch, R. Donnell, G. N. (1967) Cystathioninuria. Am. J. Dis. Child. 113, 119–127.Google Scholar
  82. 80.
    Tada, K., Yoshida, T., Yokoyama, Y., Sato, T., Nakagawa, H. Arakawa, T. (1968) Cystathioninuria not associated with vitamin B-6 dependency: A probable new type of cystathioninuria. Tohoku J. Exp. Med. 95, 235–242.Google Scholar
  83. 81.
    Levy, H. L., Mudd, S. H. Madigan, P. M. (1973) Pyridoxine- unresponsive cystathioninemia. Pediat. Res. 7, 390.Google Scholar
  84. 82.
    Pascal, T. A., Gaull, G. E., Beratis, N. G., Gillam, B. M. Tallan, H. H. (1978) Cystathionase deficiency: Evidence for genetic heterogeneity in primary cystathioninuria. Pediat. Res. 12, 125–133.Google Scholar
  85. 83.
    Pascal, T. A., Beratis, N. G., Tallan, H. H. Gaull, G. E. (1979) Cystathionase deficiency: The effect of cofactor on the stability of normal and abnormal enzyme from lymphoid cell lines. Enzyme 24, 265–268.Google Scholar
  86. 84.
    Van der Horst, C.J.G. Kuiper, C. J. (1972) Investigation into the occurrence of some steroids, amino acids and carbohydrates on specific days of the oestrus cycle of the pig. Neth. J. Vet. Sci. 5, 35–46.Google Scholar
  87. 85.
    Amende, L. M. Pierce, S. K. (1978) Hypotaurine: The identity of an unknown ninhydrin-positive compound co-eluting with urea in amino acid extracts of bivalve tissue. Comp. Biochem. Physiol. 59B, 257–261.Google Scholar
  88. 86.
    Sturman, J. A. (1980) Formation and accumulation of hypo-taurine in rat liver regenerating after partial hepatectomy. Life Sci. 26, 267–272.CrossRefGoogle Scholar
  89. 87.
    Sturman, J. A. Hayes, K. C. (1980) The biology of taurine in nutrition and development. Adv. Nutr. Res. 3, 231–299.Google Scholar
  90. 88.
    Jacobsen, J. G., Thomas, L. L. Smith, L. H., Jr. (1964) Properties and distribution of mammalian L-cysteine sulfinate carboxylyases. Biochim. Biophys. Acta 85, 103–116.Google Scholar
  91. 89.
    Agrawal, H. C., Davison, A. N. Kaczmarek, L. K. (1971) Subcellular distribution of taurine and cysteinesulphinate decarboxylase in developing rat brain. Biochem. J. 122, 759–763.Google Scholar
  92. 90.
    Pasantes-Morales, H., Mapes, C., Tapia, M. R. Mandel, P. (1976) Properties of soluble and particulate cysteine sulfinate decarboxylase of the adult and the developing rat brain. Brain Res. 107, 575–589.CrossRefGoogle Scholar
  93. 91.
    Loriette, C. Chatagner, F. (1978) Cysteine oxidase and cysteine sulfinic acid decarboxylase in developing rat liver. Experientia 34, 981–982.Google Scholar
  94. 92.
    Pasantes-Morales, H., Lopez-Colome, A. M., Salceda, R. Mandel, P. (1976) Cysteine sulphinate decarboxylase in chick and rat retina during development. J. Neurochem. 27, 1103–1106.CrossRefGoogle Scholar
  95. 93.
    Sorbo, B. Heyman, T. (1957) On the purification of cysteinesulfinic acid decarboxylase and its substrate specificity. Biochim. Biophys. Acta 23, 624–627.Google Scholar
  96. 94.
    Chatagner, F., Durieu-Trautmann, O. Rain, M. C. (1968) Influence du phosphate de pyridoxal et de quelques autres derives de la pyridoxine sur la stabilite in vitro de la cystathionase et de la decarboxylase de l’acide cysteine sulfinique. Bull. Soc. Chico. Biol. 50, 129–141.Google Scholar
  97. 95.
    Lin, Y.-C., Demeio, R. H. Metrione, R. M. (1971) Purifi- cation and properties of rat liver cysteine sulfinate decarboxylase. Biochim. Biophys. Acta 250, 558–567.Google Scholar
  98. 96.
    Guion-Rain, M. C. Chatagner, F. X1972) Rat liver cysteine sulfinate decarboxylase: Some observations about substrate specificity. Biochim. Biophys. Acta 276, 272–276.Google Scholar
  99. 97.
    Federici, G., Santoro, L., Tornati, U. Cannella, C. (1973) Purificazione e proprieta della L-cisteinsolfinico decarbossilasi dal rene di cavallo. Boll. Soc. Ital. Biol. Sper. 49, 679–685.Google Scholar
  100. 98.
    Gúion-Rain, M. C., Portemer, C. Chatagner, F. (1975) Rat liver cysteine sulfinate decarboxylase: Purification, new appraisal of the molecular weight and determination of catalytic properties. Biochim. Biophys. Acta 384, 265–276.Google Scholar
  101. 99.
    Cavallini, B., Mondovi, B. De Marco, C. (19-CTT The identity of cysteine desulfhydrase with cystathionase and mechanism of cysteine-cystine desulfhydration. Proc. Sympos. Chem. Biol. Aspects of Pyridoxal Catalysis, pp. 361–376.Google Scholar
  102. 100.
    Jolles-Bergeret, B., Brun, D., Labouesse, J. Chatagner, F. (1963) Etude de la degradation de la 1-cysteine par un enzyme purifie isole du foie de rat (Cysteine desulfurase “soluble” ou cystathionase). Bull. Soc. Chim. Biol. 45, 397–411.Google Scholar
  103. 101.
    Kredich, N. M., Keenan, B. S. Foote, L. J (1972) The purification and subunit structure of cysteine desulfhydrase from Salmonella typhimurium. J. Biol. Chem. 247, 7157–7162.Google Scholar
  104. 102.
    Kint, J. A. Carton, D. (1971) New evidence for the identity of homoserine deaminase and cystathionase in human liver. Arch. Int. Physiol. Biochim. 79, 202.Google Scholar
  105. 103.
    Ubuka, T., Umemura, S., Ishimoto, Y Shimomura, M. (1977) Transaminase of L-cysteine in rat liver mitochondria. Physiol. Chem. Phys. 9, 91–96.Google Scholar
  106. 104.
    Ip, M.P.C., Thibert, R. J. Schmidt, D. E. (1977) Purifi- cation and partial characterization of cysteine-glutamate transaminase from rat liver. Canad. J. Biochem. 55, 958–964.Google Scholar
  107. 105.
    Chatagner, F., Bergeret, B., Sejourne, T. Fromageot, C. (1952) Transamination et desulfination de l’acide L-cysteinesulfinique. Biochim. Biophys. Acta 9, 340–341.Google Scholar
  108. 106.
    Singer, T. P. Kearney, E. B. (1954-) Pathways of L-cysteinesulfinate metabolism in animal tissues. Biochim. Biophys. Acta 14, 570–571.Google Scholar
  109. 107.
    Recasens, M., Gabellec, M. M., Austin, L. Mandel, A. (1978) Regional and subcellular distribution of cysteine sulfinate transaminase in rat nervous system. Biochem. Biophys. Res. Comm. 83, 449–456.Google Scholar
  110. 108.
    Recasens, M., Gabellec, M. M., Mack, G. Mandel, P. (1978) Comparative study of miscellaneous properties of cysteine sulfinate transaminase and glutamate oxaloacetate transaminase in chick retina homogenate. Neurochem. Res. 3, 27–35.Google Scholar
  111. 109.
    Recasens, M., Benezra, R., Gabellec, M. M., Delaunoy, J. P. Mandel, P. (1979) Purification and some properties of cysteine sulfinate transaminase. FEBS Letter 99, 51–54.CrossRefGoogle Scholar
  112. 110.
    Yagi, T., Kagamiyama, H. Nozaki, M. ( 1979 Cysteine sul- finate transamination activity of aspartate aminotransferases. Biochem. Biophys. Res. Comm. 90, 447–452.Google Scholar
  113. 111.
    Rinaldi, A., Floris, G., Cossu, P. DeMarco, C. (1978) Transamination of selenohypotaurine. Bull. Molec. Biol. Med. 3, 234–242.Google Scholar
  114. 112.
    Tam, C. F., Tunnicliff, G., Ngo, T. T. Barbeau, A. (1977) A sensitive radiometric assay for cysteic acid decarboxylase activity in crude enzyme preparations of rat liver and brain. Comp. Biochem. Physiol. 58, 115–117.Google Scholar
  115. 113.
    Wu, J.-Y., Moss, L. G. Chen, M.-S. (1979) Tissue and regional distribution of cysteic acid decarboxylase: A new assay method. Neurochem. Res. 4, 201–212.Google Scholar
  116. 114.
    Kontro, P. Oja, S. S. (1980) Hypotaurine oxidation by mouse tissues. In: Natural Sulfur Compounds: Novel Biochemical and Structural Aspects ( Cavallini, D., Gaull, G. E. Zappia, V., eds.), pp. 201–212, Plenum Press, New York.Google Scholar
  117. 115.
    Sturman, J. A., Cohen, P. A. Gaull, G. E. (1969) Effects of deficiency of vitamin B-6 on transsulfuration. Biochem. Med. 3, 244–251.Google Scholar
  118. 116.
    Pan, F. Pai, S. (1970) Dietary vitamin B-6 and enzymes of methionine metabolism in rat liver. J. Chinese Chem. Soc. 17, 46–53.Google Scholar
  119. 117.
    Finkelstein, J. D. Chalmers, F. T. (1970) Pyridoxine effects on cystathionine synthase in rat liver. J. Nutr. 100, 467–469.Google Scholar
  120. 118.
    Meister, A., Morris, H. P. Tice, S. V. (1953) Effect of vitamin B-6 deficiency on hepatic transaminase and cysteine desulfhydrase systems. Proc. Soc. Exp. Biol. Med. 82, 301–304.Google Scholar
  121. 119.
    Hope, D. B. (1955) Pyridoxal phosphate as the coenzyme of the mammalian decarboxylase for L-cysteine sulphinic and L-cysteic acids. Biochem. J. 59, 497–500.Google Scholar
  122. 120.
    Rassin, D. K. Sturman, J. A.71975) Cysteine sulfinic acid decarboxylase in rat brain: Effect of vitamin B-6 deficiency on soluble and particulate components. Life Sci. 16, 875–882.Google Scholar
  123. 121.
    Sturman, J. A., Cohen, P. A. Gaull, G. E. (19701—Metabolism of L-35S-methionine in vitamin B-6 deficiency: Observations on cystathioninuria. Biochem. Med. 3, 510–523.Google Scholar
  124. 122.
    Sturman, J. A. Rivlin, R. S. (1975) Pathogenesis of brain dysfunction in deficiency of thiamine, riboflavin, pantothenic acid, or vitamin B-6. In: Biology of Brain Dysfunction ( Gaull, G. E., ed.), vol 3, pp. 425–475, Plenum Press, NY.CrossRefGoogle Scholar
  125. 123.
    Sturman, J. A. (1973) Taurine pool sizes in the rat: Effects of vitamin B-6 deficiency and high taurine diet. J. Nutr. 102, 1566–1580.Google Scholar
  126. 124.
    Sturman, J. A. Cohen, P. A. (1971) Cystine metabolism in vitamin B-6 deficiency: Evidence of multiple taurine pools. Biochem. Med. 5, 245–268.Google Scholar
  127. 125.
    Bosron, W. F., Veitch, R. L., Lumeng, L. Li, T.-K. (1978) Subcellular localization and identification of pyridoxal 5’phosphate-binding proteins in rat liver. J. Biol. Chem. 253, 1488–1492.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • John A. Sturman
    • 1
  1. 1.Developmental Neurochemistry Laboratory, Department of Pathological NeurobiologyInstitute for Basic Research in Mental RetardationStaten IslandUSA

Personalised recommendations