Vitamin B-6 Analysis: Some Historical Aspects

  • Esmond E. Snell


The discovery and purification of almost every vitamin or other physiologically active substance has been achieved only as methods which permit its detection have been devised. Even crude methods may suffice to permit isolation of the active compound; once the purified compound is available and its chemical nature is known, it becomes possible to modify old methods or devise new ones that provide enhanced convenience, specificity, and sensitivity.


Lactic Acid Bacterium Rice Bran Pyridoxal Phosphate Microbiological Assay Historical Aspect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    György, P. (1934) Vitamin B-2 and the pellagra-like dermatitis of rats. Nature 133, 448–449.CrossRefGoogle Scholar
  2. 2.
    Lepkovsky, S. (1938) Crystalline factor I. Science 87, 169–170.CrossRefGoogle Scholar
  3. 3.
    Keresztesy, J. C. & Stevens, J. R. (1938) Vitamin B-6. Proc. Soc. Exp. Biol. Med. 38, 64–65 J. Am. Chem. Soc. 60, 1267–1268.Google Scholar
  4. 4.
    Gyorgy, P. (1938) Crystalline vitamin B-6. J. Am. Chem. Soc. 60, 983–984.CrossRefGoogle Scholar
  5. 5.
    Kuhn, R. & Wendt, G. (1938) Ober das antidermatitische Vitamin der Hefe. Ber. Deut. Chem. Ges. 71B, 780–782.Google Scholar
  6. 6.
    Ichiba, A. & Michi, K. (1938) Isolation of vitamin B-6. Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 34, 623–626.Google Scholar
  7. 7.
    Moeller, E. F. (1938) Vitamin B-6 (AdermiiiT als Wuchstoff für Milchsäurebakterien. Z. Physiol. Chem. 254, 285–286.Google Scholar
  8. 8.
    Schulz, A., Atkin, L. & Frey, C. N. (1939) Vitamin B-6, a growth promoting factor for yeast. J. Am. Chem. Soc. 61, 1931.CrossRefGoogle Scholar
  9. 9.
    Eakin, R. E. & Williams, R. J. (1939) Vitamin B-6 as a yeast nutrilite. J. Am. Chem. Soc. 61, 1932.CrossRefGoogle Scholar
  10. 10.
    Beadle, G. W. & Tatum, E. L. (1941) Genetic control of biochemical reactions in Neurospora. Proc. Natl. Acad. Sci. U.S. 27, 499–506.CrossRefGoogle Scholar
  11. 11.
    Snell, E. E. & Strong, F. M. (1939) A microbiological assay for riboflavin. Ind. Eng. Chem., Anal. Ed. 11, 346–351.CrossRefGoogle Scholar
  12. 12.
    Snell, E. E. (1942) Effect of heat sterilization on growth-promoting activity of pyridoxine for Streptococcus faecalis R. Proc. Soc. Exp. Biol. Med. 51, 356–358.Google Scholar
  13. 13.
    Snell, E. E., Guirard, B. M. & Williams, R. J. (1942) Occurrence in natural products of a physiologically active metabolite of pyridoxine. J. Biol. Chem. 143, 519–530.Google Scholar
  14. 14.
    Snell, E. E. (1944) The vitamin B-6 group. I. Formation of additional members from pyridoxine and evidence concerning their structure. J. Am. Chem. Soc. 66, 2082–2088.Google Scholar
  15. 15.
    Carpenter, L. E. & Strong, F. M. (1944) Determination of pyridoxine and pseudopyridoxine. Arch. Biochem. 3, 375–388.Google Scholar
  16. 16.
    Snell, E. E. (1944) The vitamin activities of pyridoxal and pyridoxamine. J. Biol. Chem. 154, 313–314.Google Scholar
  17. 17.
    Harris, S. A., Heyl, D. & Folkers, D. (1944) The structure and synthesis of pyridoxamine and pyridoxal. J. Biol. Chem. 154, 315–316; J. Am. Chem. Soc. 66, 2089–2092.Google Scholar
  18. 18.
    Snell, E. E. & Rannefeld, A. N. (1945) The vitamin B-6 group. III. The vitamin activity of pyridoxal and pyridoxamine for various organisms. J. Biol. Chem. 157, 475–489.Google Scholar
  19. 19.
    Boyd, M. J., Logan, M. A. & Tytell, A. A. (1948)The growth requirements of Clostridium perfringens (welchii) BP6K. J. Biol. Chem. 174, 1013–1025.Google Scholar
  20. 20.
    Kidder, G. W. & Dewey, V. C. (1949) Studies on the biochemistry of Tetrahymena. XII. Pyridoxine, pyridoxal and pyridoxamine. Arch. Biochem. 21, 58–65.Google Scholar
  21. 21.
    Sarma, P. S., Snell, E. E. & Elvehjem, C. A. (1946) The vitamin B-6 group. VIII. Biological assay of pyridoxal, pyridoxamine, and pyridoxine. J. Biol. Chem. 165, 55–63.Google Scholar
  22. 22.
    Luckey, T. D., Briggs, G. M., Elvehjem, C. A. & Hart, E. B. (1945) Activity of pyridoxine derivatives in chick nutrition. Proc. Soc. Exptl. Biol. Med. 58, 340–344.Google Scholar
  23. 23.
    Sarma, P. S., Snell, E. E. & Elvehjem, C. A. (1946) The vitamin B-6 group. IX. Comparative growth and antianemic potencies of pyridoxal, pyridoxamine and pyridoxine for dogs. Proc. Soc. Exptl. Biol. Med. 63, 284–286.Google Scholar
  24. 24.
    Snell, E. E. (1945) The vitamin B-6 group. IV. Evidence for the occurrence of pyridoxamine and pyridoxal in natural products. J. Biol. Chem. 157, 491–505.Google Scholar
  25. 25.
    Rabinowitz, J. C. & Snell, E. E. (1948) The vitamin B-6 group. XIV. Distribution of pyridoxal, pyridoxamine, and pyridoxine in some natural products. J. Biol. Chem. 176, 1157–1167.Google Scholar
  26. 26.
    Gyorgy, P. (1964) The history of vitamin B-6. Introductory remarks. Vitam. Horm. 22, 361–365.Google Scholar
  27. 27.
    Uzawa, S. (1943) Formation of indole from L-tryptophan (VII). Separation of apo-and co-tryptophanase. J. Osaka Med. Assoc. 42, 1637.Google Scholar
  28. 28.
    Gale, E. F. (1946) The bacterial amino acid decarboxylases. Advan. Enzymol. 6, 1–32.Google Scholar
  29. 29.
    Gunsalus, I. C., Bellamy, W. D. & Umbreit, W. W. (1944) A phosphorylated derivative of pyridoxal as coenzyme of tyrosine decarboxylase J. Biol. Chem. 155, 685–686.Google Scholar
  30. 30.
    Wood, W. A., Gunsalus, I. C. & Umbreit, W. W. (1947) Function of pyridoxal phosphate. Resolution and purification of the tryptophanase enzyme of Escherichia coli. J. Biol. Chem. 170 313–321.Google Scholar
  31. 31.
    Heyl, D., Luz, E., Harris, S. A. & Folkers, K. (1951) Phosphates of the vitamin B-6 group. I. The structure of codecarboxylase. J. Am. Chem. Soc. 73, 3430–3433.Google Scholar
  32. 32.
    Rabinowitz, J. C. & Snell, E. E. (1947) The vitamin B-6 group. XII. Microbiological activity and natural occurrence of pyridoxamine phosphate. J. Biol. Chem. 169, 643–650.Google Scholar
  33. 33.
    McNutt, W. S. & Snell, E. E. (1948) Phosp aès of pyridoxal and pyridoxamine as growth factors for lactic acid bacteria. J. Biol. Chem. 173, 801–802.Google Scholar
  34. 34.
    Wada, H., Morisue, T., Nishimura, Y., Morino, W., Sakamota, Y. & Ichihara, K. (1959) Enzymatic studies on pyridoxine metabolism. Proc. Japan Acad. 35, 299–304.Google Scholar
  35. 35.
    Dempsey, W. B. (1966) Synthesis of pyridoxine by a pyridoxal auxotroph of Escherichia coli. J. Bacteriol. 92, 333–337.Google Scholar
  36. 36.
    György, P., ed. (1950) Vitamin Methods, vol. I (571 pp.) and vol. II (740 pp.). Academic press, N.Y.Google Scholar
  37. 37.
    Scudi, J. V. (1942) Conjugated pyridoxine in rice bran concentrates. J. Biol. Chem. 145 637–639.Google Scholar
  38. 38.
    Scudi, J. V., Buhs, R. P. & Hood, D. B. (1942) The metab olism of vitamin B-6. J. Biol. Chem. 142, 323–328.Google Scholar
  39. 39.
    Rubin, S. H. & Scheiner, J. (1946) Tí availability of vitamin B-6 in yeast to Saccharomyces carlsbergensis. J. Biol. Chem. 162, 389–390.Google Scholar
  40. 40.
    Rabinowitz, J. C. & Snell, E. E. (1947) The vitamin B-6 group. Extraction procedures for the microbiological determination of vitamin B-6. Ind. Eng. Chem., Anal. Ed. 19, 277–280.Google Scholar
  41. 41.
    Cunningham, E. & Snell, E. E. (1945) The vitamin B-6 group. VI. The comparative stability of pyridoxine, pyridoxamine, and pyridoxal. J. Biol. Chem. 158, 491–495.Google Scholar
  42. 42.
    Snell, E. E. (1945) The vitamin B-6 group. V. The reversible interconversion of pyridoxal and pyridoxamine by transamination reactions. J. Am. Chem. Soc. 67, 194–197.Google Scholar
  43. 43.
    Heyl, D., Harris, S. A. & Folkers, K. (1948) The chemistry of vitamin B-6. VI. Pyridoxylamino acids. J. Am. Chem. Soc. 70, 3429–3431.CrossRefGoogle Scholar
  44. 44.
    Metzler, D. E., Longenecker, J. B. & Snell, E. E. (1954) The reversible catalytic cleavage of hydroxyamino acids by pyridoxal and metal salts. J. Am. Chem. Soc. 76, 639–644.CrossRefGoogle Scholar
  45. 45.
    Wendt, G. & Bernhart, F. W. (1960) The structure of a sulfur-containing compound with vitamin B-6 activity. Arch. Biochem. Biophys. 88, 270–272.Google Scholar
  46. 46.
    Barnett, G. E. & Pearson, W. N. (1969) Isolation and identification of a new urinary metabolite of 14C-pyridoxine in the rat. Fed. Proc. 28, 559 (Abst. 1669).Google Scholar
  47. 47.
    Fischer, E. H., Kent, A. B., Snyder, E. R. & Krebs, E. G. (1958) The reaction of sodium borohydride with muscle phosphorylase. J. Am. Chem. Soc. 80, 2906–2907.CrossRefGoogle Scholar
  48. 48.
    Gregory, J. F. & Kirk, J. R. (1978) Assessment of storage effects on vitamin B-6 stability and bioavailability in dehydrated food systems. J. Food Science 43, 1801–1808.CrossRefGoogle Scholar
  49. 49.
    Heyl, D., Harris, S. A. & Folkers, K. (1952) Chemistry of vitamin B-6. VIII. Additional pyridoxylideneamines and pyridoxylamines. J. Am. Chem. Soc. 74, 414–416.Google Scholar
  50. 50.
    Snell, E. E. & Rabinowitz, J. C. (1948) The microbiological activity of pyridoxylamino acid. J. Am. Chem. Soc. 70, 3432–3434;CrossRefGoogle Scholar
  51. Rabinowitz, J. C. & Snell, E. E. (1953) The microbiological activity of pyridoxylamines. J. Am. Chem. Soc. 75, 998.CrossRefGoogle Scholar
  52. 51.
    Gregory, J. F. & Kirk, J. R. (1978) Vitamin B-6 activity for rats of E-pyridoxyllysine bound to dietary protein. J. Nutr. 108 1192–1199.Google Scholar
  53. 52.
    Linkswiler, H., Baumann, C. A. & Snell, E. E. (1951) Effect of aureomycin on the response of rats to various forms of vitamin B-6. J. Nutr. 43, 565–573.Google Scholar
  54. 53.
    Schreiber, G., Eckstein, M., Oeser, A. & Holzer, H. (1964) Zur Bestimmung von Pyridoxal-5-phosphorsaureester mit Apoaspartatamino-transferase aus Bierhefe. Biochem. Zeit. 340, 35–40.Google Scholar
  55. 54.
    Scudi, J. V. (1941) On the colorimetric determination of vitamin B-6. J. Biol. Chem. 139, 707–720.Google Scholar
  56. 55.
    Ormsby, A. A., Fisher, A. & Schlenk, F. (1947) Note on the colorimetric determination of pyridoxine, pyridoxal and pyridoxamine. Arch. Biochem. 12, 79–81.Google Scholar
  57. 56.
    Toepfer, E. W. & Lehmann, J. (1961) Procedure for chromatographic separation and microbiological assay of pyridoxine, pyridoxal, and pyridoxamine in food extracts. J. Assoc. Off. Agric. Chem. 44, 426–430.Google Scholar
  58. 57.
    Contractor, S. F. & Shane, B. (1971) Metabolism of (14C)pyridoxol in the pregnant rat. Biochim. Biophys. Acta 230, 127–136.Google Scholar
  59. 58.
    Dâhlquist, G., Lindstedt, S. & Tiselius, H.-G. (1969) Studies on the distribution and elimination of (H8)pyridoxine in mice. Acta Physiol. Scand. 75, 427–432.Google Scholar
  60. 59.
    Vanderslice, J. T., Stewart, K. K. & Varmas, M. M. (1979) Liquid chromatographic separation and quantitation of B-6 vitamers and their metabolite, pyridoxic acid. J. Chromatogr., 280–285.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Esmond E. Snell
    • 1
  1. 1.Departments of Microbiology and ChemistryThe University of TexasAustinUSA

Personalised recommendations