Advertisement

Abstract

The Maillard reaction is a type of non-enzymic browning which involves the reaction of carbonyl compounds, especially reducing sugars, with cornpounds which possess a free amino group, such as amino acids, amines and proteins. In most foods, the ε-amino groups of the lysine residues of proteins are the most important source of free amino groups, and the ease with which they take part in the reaction explains why the Maillard reaction is the most important route to nutritional damage of food proteins. 1,2 The Maillard reaction in fact comprises a complex network of intertwining reactions and takes place during food processing, especially when heat treatment is involved, and also on storage. Apart from resulting in nutritional damage, the Maillard reaction is also primarily responsible for the development of aroma and colour, which may be desirable or undesirable, in heated foods. It also results in the formation of potentially toxic compounds and in the development of components with antioxidant properties.3 In addition, it occurs in vivo. The Maillard reaction and its ramifications are so important that four symposia have been devoted to it over the last 12 years.4–7

Keywords

Lysine Residue Maillard Reaction Arginine Residue Heat Stability Maillard Reaction Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hurrell, R. F., Reactions of food proteins during processing and storage and their nutritional consequences. In Developments in Food Proteins, Vol. 3, ed. B. J. F. Hudson. Elsevier, London, 1984, pp. 213–244.Google Scholar
  2. 2.
    Hurrell, R. F., Food manufacturing processes and their influence on the nutritional quality of foods. In Nutritional Impact of Food Processing, ed. J. C. Somogyi & H. R. Miller. Bibl. Nutr. Dieta. No. 43. Karger, Basel, 1989, pp. 125–139.Google Scholar
  3. 3.
    Nursten, H. E., Maillard browning reactions in dried foods. In Concentration and Drying of Foods, ed. D. MacCarthy. Elsevier Applied Science, London, 1986, pp. 53–68.Google Scholar
  4. 4.
    Eriksson, C., ed., Mallard Reactions in Food. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon, Oxford, 1981.Google Scholar
  5. 5.
    Waller, G. R. & Feather, M. S., ed. The Maillard Reaction in Foods and Nutrition. ACS Symp. Ser. 215, ACS, Washington DC, 1983.Google Scholar
  6. 6.
    Fujimaki, M., Namiki, M. & Kato, H., ed. Amino-Carbonyl Reactions in Food and Biological Systems. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986.Google Scholar
  7. 7.
    Finot, P. A., Aeschbacher, H. U., Hurrell, R. F. & Liardon, R., ed. The Maillard Reaction in Food Processing, Human Nutrition and Physiology. Birkhäuser, Basel, 1990.Google Scholar
  8. 8.
    Hodge, J. E., Chemistry of browning reactions in model systems. J. Agric. Food Chem., 1 (1953) 928–943.Google Scholar
  9. 9.
    Ellis, G. P., The Maillard reaction. Adv. Carbohydr. Chem., 14 (1959) 63–134.Google Scholar
  10. 10.
    Reynolds, T. H., Chemistry of nonenzymic browning. I. The reaction between aldoses and amines. Adv. Food Res., 12 (1963) 1–52.Google Scholar
  11. 11.
    Reynolds, T. H., Chemistry of nonenzymic browning. II. Adv. Food Res., 14 (1965) 167–283.Google Scholar
  12. 12.
    Nursten, H. E., Recent developments in studies of the Maillard reaction. Food Chem., 6 (1981) 263–277.Google Scholar
  13. 13.
    Danehy, J. P., Maillard reactions: nonenzymatic browning in food systems with special reference to the development of flavor. Adv. Food Res., 30 (1986) 77–138.Google Scholar
  14. 14.
    Namiki, M., Chemistry of Maillard reactions: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens. Adv. Food. Res., 32 (1988) 115–184.Google Scholar
  15. 15.
    Ledl, F., Chemical pathways of the Maillard reaction. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 19–42.Google Scholar
  16. 16.
    Ledl, F. & Schleicher, E., New aspects of the Maillard reaction in foods and in the human body. Angew. Chem. Int. Ed. Engl., 29 (1990) 565–594.Google Scholar
  17. 17.
    Ames, J. M., Control of the Maillard reaction in food systems. Trends Food Sci. Technol., 1 (1990) 150–154.Google Scholar
  18. 18.
    Nursten, H. E., Key mechanistic problems posed by the Maillard reaction. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 145–153.Google Scholar
  19. 19.
    Hodge, J. E., Origin of flavors in foods: non-enzymatic browning reactions. In Symp. Foods: Chemistry and Physiology of Flavors, ed. H. W. Schultz, E. A. Day & L. M. Libbey. AVI, Westport, Conn., 1967, pp. 465–491.Google Scholar
  20. 20.
    Mills, F. D., Baker, B. G. & Hodge, J. E., Amadori compounds as nonspecific flavor precursors in processed foods. J. Agric. Food Chem., 17 (1969) 723–727.Google Scholar
  21. 21.
    Anet, E. F. L. J., Chemistry of non-enzymic browning. II. Some crystalline amino acid-deoxy sugars. Aust. J. Chem., 10 (1957) 193–197.Google Scholar
  22. 22.
    Baltes, W., Franke, K., Hörtig, W., Otto, R. & Lessig, U., Investigations on model systems of Maillard reactions. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 137–145.Google Scholar
  23. 23.
    Heyns, K., Müller, G. & Paulsen, H., Quantitative studies on the reactionsof hexoses with amino acids. Justus Liebigs Ann. Chem., 703 (1967) 202–214.Google Scholar
  24. 24.
    Hayashi, T., Mase, S. & Namiki, M., Formation of the N,N′-dialkylpyrazine cation radical from glyoxal dialkylimine produced on reaction of a sugar with an amine or amino acid. Agric. Biol. Chem., 49 (1985) 3131–3137.Google Scholar
  25. 25.
    Hayashi, T., Ohta, Y. & Namiki, M., Electron spin resonance spectral study on the structure of the novel free radical products formed by the reactions of sugars with amino acids or amines. J. Agric. Food Chem., 25 (1977) 1282–1287.Google Scholar
  26. 26.
    Namiki, M. & Hayashi, T., A new mechanism of the Maillard reaction involving sugar fragmentation and free radical formation. In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller & M. S. Feather. ACS Symp. Ser. 215, ACS, Washington DC, 1983, pp. 21–46.Google Scholar
  27. 27.
    Hayashi, T., Mase, S. & Namiki, M., Formation of three-carbon sugar fragment at an early stage of the browning reaction of sugar with amines or amino acids. Agric. Biol. Chem., 50 (1986) 1959–1964.Google Scholar
  28. 28.
    Hayashi, T. & Namiki, M., Role of sugar fragmentation in an early stage browning of amino-carbonyl reaction of sugar with amino acids. Agric. Biol. Chem., 50 (1986) 1965–1970.Google Scholar
  29. 29.
    Yano, M., Hayashi, T. & Namiki, M., Formation of free radical products by the reaction of dehydroascorbic acid with amino acid. J. Agric. Food Chem., 24 (1976) 815–819.Google Scholar
  30. 30.
    Gomyo, T., Haiyan, L., Miura, M., Hayase, F. & Kato, H., Kinetic aspects of the blue pigment formation in a Maillard reaction between D-xylose and glycine. Agric. Biol. Chem., 53 (1989) 949–957.Google Scholar
  31. 31.
    Yaylayan, V., Jocelyn Pare, J. R., Laing, R. & Sporns, P., Intramolecular nucleophilic substitution reactions of tryptophan and lysine Amadori rearrangement products. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 115–120.Google Scholar
  32. 32.
    Anet, E. F. L. J., Formation of furan compounds from sugars. Chem. Ind. (1962) 262.Google Scholar
  33. 33.
    Beck, J., Ledl, F., Sengl, M. & Severin, T., Formation of acids, lactones and esters through the Maillard reaction. Z. Lebensm. Unters. Forsch., 190 (1990) 212–216.Google Scholar
  34. 34.
    Ledl, F., Hiebl, J. & Severin, T., Formation of coloured 13-pyranones from hexoses and pentoses. Z. Lebensm. Unters. Forsch., 177 (1983) 353–355.Google Scholar
  35. 35.
    Kato, H., Chemical studies on amino-carbonyl reaction III. Formation of substituted pyrrole-2-aldehydes by reaction of aldoses with alkylamines. Agric. Biol. Chem. 31 (1967) 1086–1090.Google Scholar
  36. 36.
    Jurch, G. R. & Tatum, J. H., Degradation of D-glucose with acetic acid and methylamine. Carbohydr. Res., 15 (1970) 233–239.Google Scholar
  37. 37.
    Pachmayr, O., Ledl, F. & Severin, T., Formation of 1-alky1–3-oxopyridiniumbetaines from sugars. XXI. Investigations relating to the Maillard reaction. Z. Lebensm. Unters. Forsch., 182 (1986) 294–297.Google Scholar
  38. 38.
    Hayase, F., Nagaraj, R. H., Miyata, S., Njoroge, F. G. & Monnier, V. M., Aging of proteins: immunological detection of a glucose-derived pyrrole formed during Maillard reaction in vivo. J. Biol. Chem., 264 (1989) 3758–3764.Google Scholar
  39. 39.
    Olsson, K., Pernemalm, P. Å., Popoff, T. & Theander, O., Formation of aromatic compounds from carbohydrates. V. Reaction of D-glucose and methylamine in slightly acidic aqueous solution. Acta Chem. Scand. Ser. B, 31(1977) 469–474.Google Scholar
  40. 40.
    Shigematsu, H., Kurata, T., Kato, H. & Fujimaki, M., Formation of 2-(5-hydroxymethy1–2-formylpyrrol-1-yl)alkyl acid lactones on roasting alkyl-aamino acid with D-glucose. Agric. Biol. Chem., 35 (1971) 2097–2105.Google Scholar
  41. 41.
    Olsson, K., Pernemalm, P. Å. & Theander, O., Formation of aromatic compounds from carbohydrates. VII. Reaction of D-glucose and glycine in slightly acidic aqueous solution. Acta Chem. Scand. Ser. B, 32 (1978) 249–256.Google Scholar
  42. 42.
    Olsson, K., Pernemalm, P. Å. & Theander, O., Reaction products and mechanism in some simple model systems. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford. 1981, 47–55.Google Scholar
  43. 43.
    Njoroge, F. G., Sayre, L. M. & Monnier, V. M., Detection of D-glucose-derived pyrrole compounds during Maillard reaction under physiological conditions. Carbohydr. Res., 167 (1987) 211–220.Google Scholar
  44. 44.
    Miller, R., Olsson, K. & Pernemalm, P. A., Formation of aromatic compounds from carbohydrates. IX. Reaction of D-glucose and L-lysine in slightly acidic, aqueous solution. Acta Chem. Scand. Ser. B, 38 (1984) 689–694.Google Scholar
  45. 45.
    Tressl, R., Helak, B. & Rewicki, D., Malzoxazin, eine tricyclische Verbindung aus Gerstenmalz. Helv. Chim. Acta., 65 (1982) 483–489.Google Scholar
  46. 46.
    Ledl, F., Krönig, U., Severin, T. & Lotter, H., Investigations relating to Maillard-reaction XVIII. Isolation of N-containing coloured products. Z. Lebensm. Unters. Forsch., 177 (1983) 267–270.Google Scholar
  47. 47.
    Njoroge, F. G., Fernandes, A. A. & Monnier, V. M., 3-(D-erythro-Trihydroxypropy1)-1-neopentylpyrrolecarboxaldehyde, a novel nonenzymatic browning product of glucose. J. Carbohydr. Chem., 6 (1987) 553–568.Google Scholar
  48. 48.
    Farmar, J. G., Ulrich, P. C. & Cerami, A., Novel pyrroles from sulfite-inhibited Maillard reactions: Insight into the mechanism of inhibition. J. Org. Chem., 53 (1988) 2346–2349.Google Scholar
  49. 49.
    Ledl, F., Fritsch, G., Hiebl, J., Pachmayr, O. & Severin, T., Degradation of Maillard products. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki &. H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 173–182.Google Scholar
  50. 50.
    Beck, J., Ledl, F. & Severin, T., Formation of 1-deoxy-D-erythro-2,3-hexodiulose from Amadori compounds. Carbohydr. Res., 117 (1988) 240–243.Google Scholar
  51. 51.
    Hiebl, J., Ledl, F. & Severin, T., Isolation of 4-hydroxy-2-(hydroxymethyl)-5-methy1–3(2H)-furanone from sugar amino acid reaction mixtures. J. Agric. Food Chem., 35 (1987) 990–993.Google Scholar
  52. 52.
    Hodge, J. E., Fisher, B. E. & Nelson, E. C., Dicarbonyls, reductones and heterocyclics produced by reactions of reducing sugars with secondary amine salts. Proc. Am. Soc. Brew. Chem. (1963) 84–92.Google Scholar
  53. 53.
    Ledl, F., Formation of aminoreductones from disaccharides. Z. Lebensm. Unters. Forsch., 179 (1984) 381–384.Google Scholar
  54. 54.
    Ledl, F. & Fritsch, G., Formation of pyrrolinone reductones by heating hexoses with amino acids. Z. Lebensm. Unters. Forsch., 178 (1984) 41–44.Google Scholar
  55. 55.
    Mills, F. D., Baker, B. G. & Hodge, J. E., Thermal degradation of 1-deoxy1-piperidino-D-fructose. Carbohydr. Res., 15 (1970) 205–213.Google Scholar
  56. 56.
    Ledl, F. & Severin, T., Formation of aminoreductones from glucose and primary amines. XIV. Investigations relating to Maillard reaction. Z. Lebensm. Unters. Forsch., 169 (1979) 173–175.Google Scholar
  57. 57.
    Simon, H., Heubach, G., Bitterlich, W. & Gleinig, H., Reaction of bromodiacetyl and of alicyclic 1-chloro-2,3-diones with primary and secondary amines to reductones and some properties of the products. Chem. Ber., 98 (1965) 3692–3702.Google Scholar
  58. 58.
    Ledl, F., Ellrich, G. & Klostermeyer, H., Proof and identification of a new Maillard compound in heated milk. Z. Lebensm. Unters. Forsch., 182 (1986) 19–24.Google Scholar
  59. 59.
    Matsuura, H., Hirao, Y., Yoshida, Y., Kumihiro, K., Fuwa, T., Kasai, R. & Tanaka, O., Study of red ginseng: new glucosides and a note on the occurrence of maltol. Chem. Pharm. Bull., 32 (1984) 4674–4677.Google Scholar
  60. 60.
    Hodge, J. E. & Nelson, E. C., Preparation and properties of galactosylisomaltol and isomaltol. Cereal Chem., 38 (1961) 207–221.Google Scholar
  61. 61.
    Patton, S., The formation of maltol in certain carbohydrate-glycine systems. J. Biol. Chem., 184 (1950) 131–134.Google Scholar
  62. 62.
    Peer H. G., van den Ouweland, G. A. M. & de Groot, C. N., The reaction of aldopentoses and secondary amine salts, a convenient method of preparing 4-hydroxy-5-methyl-2,3-dihydrofuran-3-one. Red. Tray. Chim. Pays-Bas, 87 (1968) 1011–1020.Google Scholar
  63. 63.
    Severin, T. & Loidl, A., Formation of pyridone derivatives from maltose and lactose. XII. Investigations of the Maillard reaction. Z. Lebensm. Unters. Forsch., 161 (1976) 119–124.Google Scholar
  64. 64.
    Ledl, F., Osiander, H., Pachmayr, O. & Severin, T., Formation of maltosine, a product of the Maillard reaction with a pyridone structure. Z. Lebensm. Unters. Forsch., 188 (1989) 207–211.Google Scholar
  65. 65.
    Huber, B. & Ledl, F., Formation of 1-amino-1,4-dideoxy-2,3-hexodiuloses and 2-aminoacetylfurans in the Maillard reaction. Carbohydr. Res., 204 (1990) 215–220.Google Scholar
  66. 66.
    Huber, B., Ledl, F., Severin, T., Stangl, A. & Pfleiderer, G., Formation of 2-(2-furoy1)-4(5)-(2-fury1)-1H-imidazole in the Maillard reaction. Carbohydr. Res., 182 (1988) 301–306.Google Scholar
  67. 67.
    Njoroge, F. G., Fernandes, A. A. & Monnier, V. M., Mechanism of formation of the putative advanced glycosylation end product and protein crosslink 2-(2-furoy1)-4,5-(2-furany1)-1H-imidazole. J. Biol. Chem., 263 (1988) 10646–10652.Google Scholar
  68. 68.
    Estendorfer, S., Ledl, F. & Severin, T., Formation of an aminoreductone from glucose. Angew. Chem. Int. Ed. Engl., 29 (1990) 536–537.Google Scholar
  69. 69.
    Beck, J., Ledl, F., Sengl, M. & Severin, T., Formation of glucosyl deoxyosones from Amadori compounds of maltose. Z. Lebensm. Unters. Forsch., 188 (1989) 118–121.Google Scholar
  70. 70.
    Ahmed, M. U., Thorpe, S. R. & Baynes, J. W., Identification of Nϵ-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem., 261 (1986) 4889–4894.Google Scholar
  71. 71.
    Hayashi, T. & Namiki, M., Role of sugar fragmentation in the Maillard reaction. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 29–38.Google Scholar
  72. 72.
    Shaw, P. E. & Berry, R. E., Hexose-amino acid degradation studies involving formation of pyrroles, furans and other low molecular weight products. J. Agric. Food Chem., 25 (1977) 641–644.Google Scholar
  73. 73.
    Nyhammar, T., Olsson, K. & Pernemalm, P. A., In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller & M. S. Feather. ACS Symp. Ser. 215, ACS, Washington D.C., 1983, pp. 71–82.Google Scholar
  74. 74.
    Nyhammar, T., Olsson, K. & Pernemalm, P. A., On the formation of 2-acylpyrroles and 3-pyridinols in the Maillard reaction through Strecker degradation. Acta Chem. Scand. Ser. B, 37 (1983) 879–889.Google Scholar
  75. 75.
    Ames, J. M. & Nursten, H. E., Recent advances in the chemistry of coloured compounds formed during the Maillard reaction. In Trends in Food Science, ed. W. S. Lien & C. W. Foo. Singapore Institute of Food Science and Technology, 1989, pp. 8–14.Google Scholar
  76. 76.
    Motai, H., Viscosity of melanoidins formed by oxidative browning. Validity of the equation for a relationship between color intensity and molecular weight of melanoidin. Agric. Biol. Chem., 40 (1976) 1–7.Google Scholar
  77. 77.
    Kato, H. & Tsuchida, H., Estimation of melanoidin structure by pyrolysis and oxidation. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 147–156.Google Scholar
  78. 78.
    Barbetti, P. & Chiappini, I., Fractionation and spectroscopic characterization of melanoidic pigments from a glucose-glycine non-enzymic browning system. Ann. Chim. (Rome), 66 (1976) 293–304.Google Scholar
  79. 79.
    Feather, M. S., Some aspects of the chemistry of non-enzymatic browning (the Maillard reaction). In Chemical Changes in Food During Processing, ed. T. Richardson & J. W. Finley. AVI, Westport, 1985, pp. 289–303.Google Scholar
  80. 80.
    Feather, M. S. & Nelson, D., Maillard polymers derived from D-glucose, D-fructose, 5-(hydroxymethyl)-2-furaldehyde, and glycine and methionine. J. Agric. Food Chem., 32 (1984) 1428–1432.Google Scholar
  81. 81.
    Benzing-Purdie, L. M. & Ratcliffe, C. I., A Study of the Maillard reaction by 13C and 15N CP-MAS NMR: Influence of time, temperature and reactants on major products. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 193–205.Google Scholar
  82. 82.
    Feather, M. S. & Huang, R. -D., Some studies on a Maillard polymer derived from L-alanine and D-glucose. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol 13. Elsevier, Amsterdam, 1986, pp. 183–192.Google Scholar
  83. 83.
    Kato, H., Kim, S. B. & Hayase, F., Estimation of the partial chemical structures of melanoidins by oxidative degradation and 13C CP-MAS NMR. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol 13. Elsevier, Amsterdam, 1986, pp. 215–223.Google Scholar
  84. 84.
    Hayase, F., Kim, S. B. & Kato, H., Analysis of the chemical structures of melanoidins by 13C NMR, 13C and 15N CP-MAS NMR spectrometry. Agric. Biol. Chem., 50 (1986) 1951–1957.Google Scholar
  85. 85.
    Benzing-Purdie, L. M., Ripmeester, J. A. & Ratcliffe, C. I., Effects of temperature on Maillard reaction products. J. Agric. Food Chem., 33 (1985) 31–33.Google Scholar
  86. 86.
    Baltes, W., Application of pyrolytic methods in food chemistry. J. Anal. Appl. Pyrol., 8 (1985) 533–545.Google Scholar
  87. 87.
    Wu, C. H., Russell, G. F. & Powrie, W. D., Paramagnetic behaviour of model system melanoidins. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol 13. Elsevier, Amsterdam, 1986, pp. 135–144.Google Scholar
  88. 88.
    Clark, A. V. & Tannenbaum, S. R., Isolation and characterisation of pigments from protein-carbonyl browning systems. Isolation, purification and properties. J. Agric. Food Chem., 18 (1970) 891–894.Google Scholar
  89. 89.
    Clark, A. V. & Tannenbaum, S. R., Studies on limit-peptide pigments from glucose-casein browning systems using radioactive glucose. J. Agric. Food Chem., 21 (1973) 40–43.Google Scholar
  90. 90.
    Clark, A. V. & Tannenbaum, S. R., Isolation and characterization of pigments from protein-carbonyl browning systems. Models for two insulinglucose pigments. J. Agric. Food Chem., 22 (1974) 1089–1093.Google Scholar
  91. 91.
    Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D., Deterioration on storage of dried skim milk. J. Dairy Res., 15 (1948) 293–356.Google Scholar
  92. 92.
    Lea, C. H. & Hannan, R. S., Studies of the reaction between proteins and reducing sugars in the ‘dry’ state. II. Further observations on the formation of the casein-glucose complex. Biochim. Biophys. Acta., 4 (1950) 518–531.Google Scholar
  93. 93.
    Lea, C. H. & Hannan, R. S., Studies of the reaction between proteins and reducing sugars in the ‘dry’ state. III. Nature of the protein groups reacting. Biochim. Biophys. Acta., 5 (1950) 433–454.Google Scholar
  94. 94.
    Ludwig, E., Die Verfolgung der Maillard-Reaktion zwischen β-Lactoglobulin und Lactose mittels Isoelektrofocussierung in Polyacrylamidgelen. Nahrung, 18 (1974) 615–620.Google Scholar
  95. 95.
    Finot, P. A., Deutsch, R. & Bujard, E., The extent of the Maillard reaction during the processing of milk. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 345–355.Google Scholar
  96. 96.
    Hurrell, R. F. & Finot, P. A., Food processing and storage as a determinant of protein and amino acid availability. In Nutritional Adequacy, Nutrient Availability and Needs, ed. J. Mauron. Experientia Basel Supplementum. Birkhäuser, Basel, 1983, pp. 135–156.Google Scholar
  97. 97.
    Erbersdobler, H. F., Protein reactions during food processing and storage -their relevance to human nutrition. In Nutritional Impact of Food Processing, ed. J. C. Somogyi & H. R. Muller. Bibl. Nutr. Dieta. No. 43. Karger, Basel, 1989, pp. 140–155.Google Scholar
  98. 98.
    Frangne, R. & Adrian, J., The Maillard reaction. VI. Reactivity of various purified proteins. Ann. Nutr. Aliment., 26 (1972) 97–106.Google Scholar
  99. 99.
    Adrian, J. & Frangne, R., Le comportement des proteolysats au cours de la reaction de Maillard. Ind. Aliment. Agric., 26 (1976) 23–28.Google Scholar
  100. 100.
    Hurrell, R. F. & Carpenter, K. J., Nutritional significance of cross-link formation during food processing. In Protein Crosslinking. Nutritional and Medical Consequences, ed. M. Friedman. Advances in Experimental Medicine and Biology, Vol. 86B. Plenum Press, New York, 1977, pp. 225–238.Google Scholar
  101. 101.
    Möller, A. B., Andrews, A. T. & Cheeseman, G. C., Chemical changes in ultra-heat-treated milk during storage. II. Lactuloselysine and fructoselysine formation by the Maillard reaction. J. Dairy Res., 44 (1977) 267–275.Google Scholar
  102. 102.
    Hurrell, R. F., Influence of the Maillard reaction on the nutritional value of foods. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 245–258.Google Scholar
  103. 103.
    Labuza, T. P. & Saltmarch, M., The nonenzymatic browning reaction as affected by water in foods. In Water Activity: Influences on Food Quality, ed. L. B. Rockland & G. F. Stewart. Academic Press, New York, 1981, pp. 605–650.Google Scholar
  104. 104.
    Ludwig, E., Untersuchungen zur Maillard-Reaktion zwischen β-Lactoglobulin und Lactose. 3. Mitt. Der Einfluß intermolekularer Disulfidbrücken auf die Blockierung von Lysin. Nahrung, 23 (1979) 707–714.Google Scholar
  105. 105.
    Nielsen, H. K., De Wecke, D., Finot, P. A., Liardon, R. & Hurrell, R. F., Stability of tryptophan during food processing and storage. 1. Comparative losses of tryptophan, lysine and methionine in different model systems. Br. J. Nutr., 53 (1985) 281–292.Google Scholar
  106. 106.
    Nielsen, H. K., Klein, A. & Hurrell, R. F., Stability of tryptophan during food processing and storage. 2. A comparison of the methods used for the measurement of tryptophan losses in processed foods. Br. J. Nutr., 53 (1985) 293–300.Google Scholar
  107. 107.
    Möller, A. B., Andrews, A. T. & Cheeseman, G. C., Chemical changes in ultra-heat-treated milk during storage. III. Methods for the estimation of lysine and sugar-lysine derivatives formed by the Maillard reaction. J. Dairy Res., 44 (1977) 277–281.Google Scholar
  108. 108.
    Hurrell, R. F. & Carpenter, K. J., The estimation of available lysine in foodstuffs after Maillard reactions. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 159–176.Google Scholar
  109. 109.
    Carpenter, K. J. & Booth, V. H. Damage to lysine in food processing: its measurement and its significance. Nutr. Abstr. Rev., 43 (1973) 423–451.Google Scholar
  110. 110.
    Erbersdobler, H., Amino acid availability. In Protein Metabolism and Nutrition, ed. D. J. A. Cole, K. N. Boorman, P. J. Buttery, D. Lewis, R. J. Neale & H. Swan. Butterworths, London, 1976, pp. 139–158.Google Scholar
  111. 111.
    Tanaka, M., Lee, T. -C. & Chichester, C. O., Effect of browning on chemical properties of egg albumin. Agric. Biol. Chem., 39 (1975) 863–866.Google Scholar
  112. 112.
    Kato, H., Matsumura, M. & Hayase, F., Chemical changes in casein heated with and without D-glucose in the powdered state or in an aqueous solution. Food Chem., 7 (1981) 159–168.Google Scholar
  113. 113.
    Holt, C., Muir, D. D. & Sweetsur, A. W. M., The heat stability of milk and concentrated milk containing added aldehydes and sugars. J. Dairy Res., 45 (1978) 47–52.Google Scholar
  114. 114.
    Nelson, V., Effects of formaldehyde and copper salts on the heat stability of evaporated milk. J. Dairy Sci., 37 (1954) 825–829.Google Scholar
  115. 115.
    Tybor, P. T., Dill, C. W. & Landmann, W. A., Effect of decolorization and lactose incorporation on the emulsification capacity of spray-dried blood protein concentrates. J. Food Sci., 38 (1973) 4–6.Google Scholar
  116. 116.
    Morales, M., Dill, C. W. & Landmann, W. A. Effect of Maillard condensation with D-glucose on the heat stability of bovine serum albumin. J. Food Sci., 41 (1976) 234–236.Google Scholar
  117. 117.
    Back, J. F., Oakenfull, D. and Smith, M. B., Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18 (1979) 5191–5196.Google Scholar
  118. 118.
    Lea, C. H., The reaction between milk protein and reducing sugar in the dry state. J. Dairy Res., 15 (1948) 369–376.Google Scholar
  119. 119.
    Lea, C. H., Hannan, R. S. & Rhodes, D. N. Studies of the reaction between proteins and reducing sugars in the dry state. IV. Decomposition of the amino-sugar complex and the reaction of acetylated casein with glucose. Biochim. Biophys. Acta., 7 (1951) 366–377.Google Scholar
  120. 120.
    Mohammad, A., Fraenkel-Conrat, H. & Olcott, H. S., The “browning” reaction of proteins with glucose. Arch. Biochim. Biophys., 24 (1949) 157–178.Google Scholar
  121. 121.
    Shalabi, S. I. & Fox, P. F., Heat stability of milk: synergistic action of urea and carbonyl compounds. J. Dairy Res., 49 (1982) 197–207.Google Scholar
  122. 122.
    Shalabi, S. I. & Fox, P. F., Heat stability of milk: influence of modification of lysine and arginine on the heat stability-pH profile. J. Dairy Res., 49 (1982) 607–617.Google Scholar
  123. 123.
    Shalabi, S. I. & Fox, P. F., Effect of diacetyl on the heat stability of concentrated milks. J. Food Technol., 17 (1982) 753–760.Google Scholar
  124. 124.
    Kato, Y., Watanabe, K. & Sato, Y., Effect of the Maillard reaction on the attributes of egg white proteins. Agric. Biol. Chem., 42 (1978) 2233–2237.Google Scholar
  125. 125.
    Watanabe, K., Sato, Y. & Kato, Y., Chemical and conformational changes of ovalbumin due to the Maillard reaction. J. Food Process. Preserv., 3 (1980) 263–274.Google Scholar
  126. 126.
    Kato, Y., Watanabe, K. & Sato, Y., Effect of Maillard reaction on some physical properties of albumin. J. Food Sci., 46 (1981) 1835–1839.Google Scholar
  127. 127.
    Kato, Y., Watanabe, K. & Sato, Y., Effect of some metals on the Maillard reaction of ovalbumin. J. Agric. Food Chem., 29 (1981) 540–543.Google Scholar
  128. 128.
    Kato, Y., Watanabe, K. & Sato, Y., Conformational stability of ovalbumin reacted with glucose in a Maillard reaction. Agric. Biol. Chem., 47 (1983) 1925–1926.Google Scholar
  129. 129.
    Wu, H., Govindarajan, S., Smith, T., Rosen, J. D. & Ho, C.-T., Glucose— lysozyme reactions in a restricted water environment. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 85–90.Google Scholar
  130. 130.
    Hull, C. J., Studies on the glycation and Maillard reactions of protein. Ph.D. Dissertation, University of South Carolina, Columbia, South Carolina, 1985.Google Scholar
  131. 131.
    Baynes, J. W., Ahmed, M. U., Fisher, C. I., Hull, C. J., Lehman, T. A., Watkins, N. G. & Thorpe, S. R., Studies on glycation of proteins and Maillard reactions of glycated proteins under physiological conditions. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 421–431.Google Scholar
  132. 132.
    Cho, R. K., Okitani, A. & Kato, H., Chemical properties and polymerizing ability of the lysozyme monomer isolated after storage with glucose. Agric. Biol. Chem., 48 (1984) 3081–3089.Google Scholar
  133. 133.
    Cho, R. K., Okitani, A. & Kato, H., Polymerisation of proteins and impairment of their arginine residues due to intermediate compounds in the Maillard reaction. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 439–448.Google Scholar
  134. 134.
    Eble, A. S., Thorpe, S. R. & Baynes, J. W., Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J. Biol. Chem., 258 (1983) 9406–9412.Google Scholar
  135. 135.
    Okitani, A., Cho, R. K. & Kato, H., Polymerization of lysozyme and impairment of its amino acid residues caused by reaction with glucose. Agric. Biol. Chem., 48 (1984) 1801–1808.Google Scholar
  136. 136.
    Cho, R. K., Okitani, A. & Kato, H., Polymerization of acetylated lysozyme and impairment of their amino acid residues due to a-dicarbonyl and a-hydroxycarbonyl compounds. Agric. Biol. Chem., 50 (1986) 1373–1380.Google Scholar
  137. 137.
    Kato, H., Cho, R. K., Okitani, A. & Hayase, F., Responsibility of 3-deoxyglucosone for the glucose-induced polymerization of proteins. Agric. Biol. Chem., 51 (1987) 683–689.Google Scholar
  138. 138.
    Igaki, N., Saai, M., Hata, F., Yamada, H., Oimomi, M., Baba, S. & Kato, H., The role of 3-deoxyglucosone in the Maillard reaction. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 103–108.Google Scholar
  139. 139.
    Shin, D. B., Hayase, F. & Kato, H., Polymerization of proteins caused by reaction with sugars and the formation of 3—deoxyglucosone under physiological conditions. Agric. Biol. Chem., 52 (1988) 1451–1458.Google Scholar
  140. 140.
    Kato, H., Yamamoto, M. & Fujimaki, M., Mechanisms of browning degradation of D-fructose in special comparison with D-glucose—glycine reaction. Agric. Biol. Chem., 33 (1969) 939–948.Google Scholar
  141. 141.
    Sakai, M., Igaki, N., Nakamichi, T., Ohara, T., Masuta, S., Maeda, Y., Hata, F., Oimomi, M. & Baba, S., Acceleration of fructose-mediated collagen glycation. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 481–486.Google Scholar
  142. 142.
    Möller, A. B., Chemical changes in ultra heat treated milk during storage. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 357–368.Google Scholar
  143. 143.
    Dworschak, E., Nonenzymic browning and its effect on protein nutrition. CRC Crit. Rev. Food Sci. Nutr., 13 (1980) 1–40.Google Scholar
  144. 144.
    Feeney, R. E., Overview on the chemical deteriorative changes of proteins and their consequences. In Chemical Deterioration of Proteins, ed. J. R. Whitaker & M. Fujimaki. ACS Symp. Ser. 123, ACS, Washington D.C., 1980, pp. 1–47.Google Scholar
  145. 145.
    Matsumoto, J. J., Chemical deterioration of muscle proteins during frozen storage. In Chemical Deterioration of Proteins, ed. J. R. Whitaker & M. Fujimaki. ACS Symp. Ser. 123, ACS, Washington D.C., 1980, pp. 95–124.Google Scholar
  146. 146.
    Spark, A. A., Role of amino acids in non-enzymic browning. J. Sci. Food Agric., 20 (1969) 308–316.Google Scholar
  147. 147.
    Ashoor, S. H. & Zent, J. B., Maillard browning of common amino acids and sugars. J. Food Sci., 49 (1984) 1206–1207.Google Scholar
  148. 148.
    Lewis, V. M. & Lea, C. H., A note on the relative rates of reaction of several reducing sugars and sugar derivatives with casein. Biochim. Biophys. Acta., 4 (1950) 532–534.Google Scholar
  149. 149.
    Rao, N. M. & Rao, M. M. Effect of non-enzymatic browning on the nutritive value of casein-sugar complexes. J. Food Sci. Tech. (Mysore), 9 (1972) 66–68.Google Scholar
  150. 150.
    Kato, Y., Matsuda, T., Kato, N., Watanabe, K. & Nakamura, R., Browning and insolubilisation of ovalbumin by the Maillard reaction with some aldohexoses. J. Agric. Food Chem., 34 (1986) 351–355.Google Scholar
  151. 151.
    Kato, Y., Matsuda, T., Kato, N., Watanabe, K. & Nakamura, R., Maillard reaction of some aldohexoses with ovalbumin. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 115–124.Google Scholar
  152. 152.
    Kato, Y., Matsuda, T., Kato, N. & Nakamura, R., Browning and protein polymerisation induced by amino-carbonyl reaction of ovalbumin with glucose and lactose. J. Agric. Food Chem., 36 (1988) 806–809.Google Scholar
  153. 153.
    Bunn, H. F. & Higgins, P. J., Reaction of monosaccharides with protein: possible evolutionary significance. Science, 213 (1981) 222–224.Google Scholar
  154. 154.
    Hayward, L. D. & Angyal, S. J., A symmetry rule for the circular dichroism of reducing sugars, and the proportion of carbonyl forms in aqueous solutions thereof. Carbohydr. Res., 53 (1977) 13–20.Google Scholar
  155. 155.
    Kato, Y., Matsuda, T., Kato, N. & Nakamura, R., Maillard reaction in sugar-protein systems. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 97–102.Google Scholar
  156. 156.
    O’Brien, J. & Morrissey, P. A., Nutritional and toxicological aspects of the Maillard reaction in foods. CRC. Crit. Rev. Food Sci. Nutr., 28 (1989) 211–248.Google Scholar
  157. 157.
    Finot, P. A., Hurrell, R. F., Deutsch, R. & Klein, A., 1979. Unpublished data. In Finot, P. A., Deutsch, R. & Bujard, E. The extent of the Maillard reaction during the processing of milk. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 345–355.Google Scholar
  158. 158.
    Knipfel, J. E., Nitrogen and energy availabilities in foods and feeds subjected to heating. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 177–192.Google Scholar
  159. 159.
    Erbersdobler, H. F., The biological significance of carbohydrate-lysine crosslinking during heat treatment of food proteins. In Protein Crosslinking: Nutritional and Medical Consequences, ed. M. Freidman. Plenum Press, New York, 1977, pp. 367–378.Google Scholar
  160. 160.
    Hansen, L. P. & Millington, R. J., Blockage of protein enzymatic digestion (carboxypeptidase-B) by heat-induced sugar-lysine reactions. J. Food Sci., 44 (1979) 1173–1177.Google Scholar
  161. 161.
    Ford, J. E., Hurrell, R. F. & Finot, P. A., Storage of milk powders under adverse conditions. 2. Influence on the content of water-soluble vitamins. Br. J. Nutr., 49 (1983) 355–364.Google Scholar
  162. 162.
    Nursten, H. E., Aroma compounds from the Maillard reaction. In Developments in Food Flavour, ed. G. G. Birch & M. G. Lindley. Elsevier Applied Science, London, 1986, pp. 173–190.Google Scholar
  163. 163.
    Parliment, T. H., McGorrin, R. J. & Ho, C.-T., ed. Thermal Generation of Aromas. ACS Symp. Ser. 409, ACS, Washington D.C., 1989.Google Scholar
  164. 164.
    Tressl, R., Processed flavors-scope and limitations. In Flavour Science and Technology, ed. Y. Bessière & A. F. Thomas. Wiley, Chichester, 1990, pp. 87–104.Google Scholar
  165. 165.
    Hurrell, R. F., Maillard reaction in flavour. In Food Flavours Part A. Introduction, ed. I. D. Morton & A. J. MacLeod. Developments in Food Science, Vol. 3A. Elsevier, New York, 1982, pp. 399–437.Google Scholar
  166. 166.
    Ferretti, A. & Flanagan, V. P., The lactose-casein (Maillard) browning system: volatile components. J. Agric. Food Chem., 19 (1971) 245–249.Google Scholar
  167. 167.
    Ferretti, A., Flanagan, V. P. & Ruth, J. M., Non-enzymic browning in a lactose-casein model system. J. Agric. Food Chem., 18 (1970) 13–18.Google Scholar
  168. 168.
    Berry, S. K. & Gramshaw, J. W., Influence of starch plus gluten on the nonenzymatic browning reaction of the glucose-glutamic acid system. J. Agric. Food Chem., 36 (1988) 1265–1267.Google Scholar
  169. 169.
    Tressl, R., Helak, B., Kersten, E. & Rewicki, D., Related ring enlargement reactions of proline, azetidinic acid, arginine and lysine with reducing sugars. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 121–132.Google Scholar
  170. 170.
    Apriyantono, A. & Ames, J. M., Volatile compounds produced on heating lysine with xylose. In Flavour Science and Technology, ed. Y. Bessière & A. F. Thomas. Wiley, Chichester, 1990, pp. 117–120.Google Scholar
  171. 171.
    Pabst, H. M. E., Ledl, F. & Belitz, H.-D., Bitter compounds obtained by heating proline and sucrose. Z. Lebensm. Unters. Forsch., 178 (1984) 356–360.Google Scholar
  172. 172.
    Schnickels, R. A., Warmbier, H. C. & Labuza, T. P., Effect of protein substitution on nonenzymatic browning in an intermediate moisture food system. J. Agric. Food Chem., 24 (1976) 901–903.Google Scholar
  173. 173.
    Nursten, H. E. and O’Reilly, R., The complexity of the Maillard reaction as shown by a xylose-glycine model system. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki and H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 15–28.Google Scholar
  174. 174.
    Ledl, F. & Severin, T., Formation of coloured compounds from hexoses. XVI. Investigations relating to the Maillard reaction. Z. Lebensm. Unters. Forsch., 175 (1982) 262–265.Google Scholar
  175. 175.
    Severin, T. & Krönig, U., Maillard reaction IV. Structure of a colored product from pentoses. Chem. Mikrobiol. Technol. Lebensm., 1 1972, 156–157.Google Scholar
  176. 176.
    Nursten, H. E. & O’Reilly, R., Coloured compounds formed by the interaction of glycine with xylose. In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller &. M. S. Feather. ACS Symp. Ser. 215, ACS. Washington D.C., 1983, pp. 103–121.Google Scholar
  177. 177.
    Ledl, F. & Severin, T., Browning reactions of pentoses with amines. Investigation of the Maillard reaction XIII. Z. Lebensm. Unters. Forsch., 167 (1978) 410–413.Google Scholar
  178. 178.
    Nursten, H. E. & O’Reilly, R., Coloured compounds formed by the interaction of glycine and xylose. Food Chem., 20 (1986) 45–60.Google Scholar
  179. 179.
    Banks, S. B., Ames, J. M. & Nursten, H. E., Isolation and characterisation of 4-hydroxy-2-hydroxymethy1–3-(2′-pyrroly1)-2-cyclopenten-1-one from a xylose/lysine reaction mixture. Chem. Ind., (1988) 433–434.Google Scholar
  180. 180.
    Kurata, T., Fujimaki, M. & Sakurai, Y., Red pigment produced by the reaction of dehydro-L-ascorbic acid with a-amino acid. Agric. Biol. Chem., 37 (1973) 1471–1477.Google Scholar
  181. 181.
    Sakurai, H. & Ishii, K., Structural analysis of ninhydrin-positive substance produced by the reaction of dehydroascorbic acid with glycylleucine. Bull. Coll. Agric. Vet. Med. Nihon Univ., 45 (1988) 50–59.Google Scholar
  182. 182.
    Lingnert, H. & Hall, G., Formation of antioxidative Maillard reaction products during food processing. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 273–279.Google Scholar
  183. 183.
    Lingnert, H., Development of the Maillard reaction during food processing. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 171–185.Google Scholar
  184. 184.
    Chuyen, N. V., Utsunomiya, N., Hidaka, A. & Kato, H., Antioxidative effect of Maillard reaction products in vivo. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 285–290.Google Scholar
  185. 185.
    Aeschbacher, H. U., Anticarcinogenic effect of browning reaction products. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 335–348.Google Scholar
  186. 186.
    Sugimura, T., Takayama, S., Ohgaki, H., Wakabayashi, K. & Nagao, M., Mutagens and carcinogens formed by cooking meat and fish: heterocyclic amines. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 323–334.Google Scholar
  187. 187.
    Nyhammar, T., Grivas, S., Olsson, K. & Jägerstad, M., Isolation and identification of beef mutagens (IQ compounds) from heated model systems of creatinine, fructose and glycine or alanine. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 323–327.Google Scholar
  188. 188.
    Jägerstad, M., Laser Reutersward, A., Olsson, R., Grivas, S., Nyhammar, T., Olsson, K. & Dahlqvist, A., Creatin(in)e and Maillard reaction products as precursors of mutagenic compounds: effects of various amino acids. Food Chem., 12 (1983) 255–264.Google Scholar
  189. 189.
    Wakabayashi, K., Takahashi, M., Nagao, M., Sato, S., Kinae, N., Tomita, I. & Sugimura, T. Quantification of mutagenic and carcinogenic heterocyclic amines in cooked foods. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 363–371.Google Scholar
  190. 190.
    Jägerstad, M., Laser Reutersward, A., Oste, R., Dahlqvist, A., Grivas, S., Olsson, K. & Nyhammar, T. Creatinine and Maillard reaction products as precursors of mutagenic compounds formed in fried beef. In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller & M. S. Feather. ACS Symp. Ser. 215, American Chemical Society, Washington D.C., 1983, pp. 507–519.Google Scholar
  191. 191.
    Monnier, V. M., Sell, D. R., Miyata, S. & Nagaraj, R. H., The Maillard reaction as a basis for a theory of aging. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology. ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 393–414.Google Scholar
  192. 192.
    Sell, D. R. & Monnier, V. M., Structure elucidation of a senescence crosslink from human extracellular matrix. J. Biol. Chem., 264 (1989) 21597– 21602.Google Scholar
  193. 193.
    O’Brien, J. M. & Morrissey, P. A., The Maillard reaction in milk products. In Heat-Induced Changes in Milk, ed. P. F. Fox. Bulletin of the IDF, No. 238, 1989, 53–61.Google Scholar
  194. 194.
    Saltmarch, M. & Labuza, T. P., Nonenzymatic browning via the Maillard reaction in foods. In Proceedings of a Conference on Nonenzymatic Glycosylation and Browning Reactions: Their Relevance to Diabetes Mellitus, ed. C. M. Peterson. Diabetes, Vol. 31, Suppl. 3, Part 2 of 2, 1982, pp. 29–35.Google Scholar
  195. 195.
    Labuza, T. P. & Schmidl, M. K., Advances in the control of browning reactions in foods. In Role of Chemistry in the Quality of Processed Food, ed. O. R. Fennema, W.-H. Chang & C.-Y. Lii. Food & Nutr. Press Inc., Westport, Conn., 1986, pp. 65–95.Google Scholar
  196. 196.
    Eichner, K. & Ciner-Doruk, M., Formation and decomposition of browning intermediates and visible sugar-amine browning reactions. In Water Activity: Influences of Food Quality, ed. L. B. Rockland & G. F. Stewart. Academic Press, New York, 1981, pp. 567–603.Google Scholar
  197. 197.
    Saltmarch, M., Vagnini-Ferrari, M. & Labuza, T. P. Theoretical basis and application of kinetics to browning in spray-dried whey food systems. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 331–344.Google Scholar
  198. 198.
    McWeeny, D. J., Sulfur dioxide and the Maillard reaction in food. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science. Pergamon Press, Oxford, Vol. 5 (1–6) (1981) pp. 395–404.Google Scholar
  199. 199.
    Shu, C.-K. & Ho, C.-T. In Thermal Generations of Aromas, ed. T. H. Parliment, R. J. McGorrin & C.-T. Ho. ACS Symp. Ser. 409. American Chemical Society, Washington D.C., 1989, pp. 229–241.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Jennifer M. Ames
    • 1
  1. 1.Department of Food Science and TechnologyUniversity of ReadingWhiteknights, ReadingUK

Personalised recommendations