Advertisement

Proteins as a Source of Flavour

  • G. S. D. Weir

Abstract

Proteins are of course one of the essential components in our nutrition. The earliest development of proteins as a contribution to flavour in our diet is subject to much speculation. Proteins may themselves be seen as part of the evolutionary process that had its earliest origins in the synthesis of laevo amino acids and thus through to the evolution of the simplest form of life capable of reproduction.

Keywords

Free Amino Acid Meat Product Protein Hydrolysate Bitter Taste Whey Protein Concentrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurand, L. W., Proteins. In Food Composition and Analysis,.ed. L. W. Aurand, A. E. Woods & M. R. Wells. Van Nostrand Reinhold Co., New York, 1987, pp. 232–282.CrossRefGoogle Scholar
  2. 2.
    Schmidt, R. H., Bitter Components in Dairy Products. In Bitterness in Foods and Beverages, ed. R. L. Rouseff, Elsevier, Amsterdam, 1990, pp. 183–204.Google Scholar
  3. 3..
    Kilcast, E. A., Sensory Properties of Foods after Irradiation. In Irradiation and Combination Treatments, conference 1/2 March 1990, IBC Technical Services Ltd., London.Google Scholar
  4. 4.
    Harwalker, V. R., Boutin-Muma, B., Cholette, J., McKellar, R. C., Emmons, D. B., & Klassen, G., Isolation and partial purification of astringent compounds from ultra-high temperature sterilized milk. J. Dairy Res., 56(1989) 367–373.CrossRefGoogle Scholar
  5. 5.
    Marshall, V. M. E., Flavour development in fermented milks. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, ed. F. Lyndon Davies & B. A. Law. Elsevier Applied Science Publishers, London, 1984, pp. 153–186.Google Scholar
  6. 6.
    Ashour, M. M., Abdel Baky, A. A. & El Neshawy, A. A., Improving the quality of domiati cheese made from recombined milk. Food Chem., 20(1986) 85–96.CrossRefGoogle Scholar
  7. 7.
    Kumar, S. & Mathur, B. N., Proteolytic changes in raw buffalo milk preserved by LP-system. Indian J. Dairy Sci., 41(1988) 318–321.Google Scholar
  8. 8.
    Dousset, X., Demaimay, M., Ravaud, C., Levesque, A., Pinet, X. D. & Kergo, Y., Proteolysis and bitterness of UHT milk during storage as a consequence of refrigeration temperature of raw milk. Le Lait, 68(1988) 143–156.CrossRefGoogle Scholar
  9. 9.
    Law, B. A., Microbial proteolysis of milk proteins. In Food Proteins, ed. P. F. Fox & J. J. Condon. Proceedings of the Kellogg Foundation International Symposium on Food Proteins, Cork, Eire, 1981. Applied Science Publishers, 1982, pp. 307–328.Google Scholar
  10. 10.
    Fox, P. F., Proteolysis during cheese manufacture and ripening. J. Dairy Sci., 72(1989) 1379–1400.CrossRefGoogle Scholar
  11. 11.
    Rousseff, R., L., Bitterness in food products; an overview. In Bitterness in Foods and Beverages.Elsevier, Amsterdam, 1990, pp. 1–14.Google Scholar
  12. 12.
    Baldwin, K. A., Baer, R. J., Parsons, J. G., Seas, S. W., Spurgeon, K. R., & Torrey, G. S., Evaluation of yield and quality of cheddar cheese manufactured from milk with added whey protein concentrate. J. Dairy Sci., 69(1986) 2543–2550.CrossRefGoogle Scholar
  13. 13.
    Banks, J. M. & Muir, D. D., Effect of incorporation of denatured whey protein on the yield and quality of Cheddar cheese. J. Soc. Dairy Technol., 38(1985) 27–32.CrossRefGoogle Scholar
  14. 14.
    Banks, J. M., Elimination of the development of bitter flavour in Cheddar cheese made from milk containing heat-denatured whey protein. J. Soc. Dairy Technol., 41(1988) 37–41.CrossRefGoogle Scholar
  15. 15.
    Anon., Say cheese for a smart award. Lab. News, (1988) (November 28) 3.Google Scholar
  16. 16.
    Hagberg, E. C., Haislip, J. R. & Johnson, B. R., Method for producing a highly flavoured cheese ingredient. US Patent No. 4 752 483, 1988.Google Scholar
  17. 17.
    Blenford, D., Functional proteins. Food Flavour. Ingred. Process. Packag., 11(1989) 55–9.Google Scholar
  18. 18.
    Oluski, V., Petrovic, M., Kelemen-Masic, D., Popov-Raljic, J. & Jodal, L., Properties of decolorized blood coagulate. Technologija-Mesa, 26(1985) 335–338.Google Scholar
  19. 19.
    Anon, Proteins impart meaty flavours. Food Process., 55(1986) p. 8.Google Scholar
  20. 20.
    Bailey, M. E. & Einig, R. G., Reaction flavors of meat. In Thermal Generation of Aromas, ed. T. H. Parliment, R. J. McGorrin & C.-T. Ho. American Chemical Society, Washington D.C., 1989, pp. 421–432.CrossRefGoogle Scholar
  21. 21.
    Spanier, A. M. & Edwards, J. V., Chromatographic isolation of presumptive peptide flavor principles from red meat. J. Liquid Chrom., 10(1987) 2745–2758.CrossRefGoogle Scholar
  22. 22.
    Spanier, A. M., Edwards, J. V. & Dupuy, H. P., The warmed-over flavor process in beef; a study of meat proteins and peptides. Food Technol., 42(1988) 112–118.Google Scholar
  23. 23.
    Gray, J. I. & Pearson, A. M., Rancidity and warmed-over flavor. In Advances in Meat Research, Vol. 3, ed. A. M. Pearson & T. R. Dutson. Van Nostrand Reinhold, New York, 1987, pp. 221–270.Google Scholar
  24. 24.
    Bailey, M. E., Inhibition of warmed-over flavor, with emphasis on Maillard reaction products. Food Technol., 42(1988) 123–126.Google Scholar
  25. 25.
    St. Angelo, A. J. Koohmaraie, M. Crippen, K. L. & Crouse, J., Acceleration of tenderization/inhibition of warmed-over flavor by calcium chlorideantioxidant infusion into lamb carcasses. J. Food Sci., 56(1991) 359–362.CrossRefGoogle Scholar
  26. 26.
    Edwards, R. A., Dainty, C. M., Hibbard, C. M. & Ramantanis, S. V., Amines in fresh beef of normal pH and the role of bacteria in changes in concentration observed during storage in vacuum packs at chill temperatures. J. Appl. Bacter., 63(1987) 427–434.Google Scholar
  27. 27.
    Blake, T., Trends in meat flavour technology. Food Manuf, 62(1987) 43, 45.Google Scholar
  28. 28.
    Nishimura, T., Rhue, M. R., Okitani, A. & Kato, H., Components contributing to the improvement of meat taste during storage. Agric. Biol. Chem., 52(1988) 2323–2330.CrossRefGoogle Scholar
  29. 29.
    Andres, C., Meat flavours produced with pharmaceutical technology. Food Process., Chicago, 46(1985) 56.Google Scholar
  30. 30.
    Gorshkova, L. V., Kudryashov, L. S., Bol’shakov, A. S. & Goncharov, G. I., Effects of electrical and mechanical treatment during salting of beef on the content of free amino acids. Izv. Vyssh. Uchebn. Zaved., Pisch. Teknol., 3(1988) 47–49. (FSTA Abstract 21 (7) 7 S 58).Google Scholar
  31. 31.
    Johnson, L. P., Miller, M. F. & Reagan, J. O., The effect of various levels of added sodium chloride and potassium chloride on the chemical, physical and sensory characteristics of precooked, recombined beef chuck roasts. J. Food Quality, 12(1988) 275–272.CrossRefGoogle Scholar
  32. 32.
    Gillett, T., A., Adipose and connective tissue. In Advances in Meat Research, Vol. 3, Restructured Meat and Poultry Products, ed. A. M. Pearson & T. R. Dutson. Van Nostrand Reinhold, New York, 1987, pp. 73–124.Google Scholar
  33. 33.
    Kim, H. & Gilbert, S. G., Isolation and identification of volatile flavor compounds in commercial granular gelatin sample. In Frontiers of Flavour, ed. G. Charalambous. Conference 1–3 July 1987. Elsevier Science Publishers, Amsterdam, 1988.Google Scholar
  34. 34.
    Umetsu, H. & Ichishima, E., Mechanism of digestion of bitter peptide from fish protein concentrate by wheat carboxypeptidase. Nippon Shok. Kog. Gakk., 32(1985) 281–287.CrossRefGoogle Scholar
  35. 35.
    Raksakulthai, N., Role of protein degradation in fermentation of fish sauce. Diss. Abstr. Int. B, 49(1989) 2947 B.Google Scholar
  36. 36.
    Fonarev, N. A. & Rzhavskaya, F. M., Changes in protein components of canned mackerel. Rybnoe Khozvaistvo, 11(1988) 85–88. (FSTA Abstract 22 (8) 8 R 9).Google Scholar
  37. 37.
    Cha, Y. J. & Ahn, C. B., Flavour components in sun-dried ray. J. Korean Soc. Food Nutr. 14(1985) 370–374.Google Scholar
  38. 38.
    Lake, C., Powder potential. Food Flay. Ingred. Packag. Process., 11(1989) 41–43.Google Scholar
  39. 39.
    Lusas, E. W. & Rhee, K. C., Applications of vegetable food proteins in traditional foods. In Plant Proteins: Applications, Biological Effects, and Chemistry, ed. R. L. Ory. American Chemical Society, Washington D.C., 1986, pp. 32–45.CrossRefGoogle Scholar
  40. 40.
    Arnoe, T., All-vegetable, isolated soy protein provides functional and nutritional benefits for today’s food products. Eur. Food Drink Rev., (Autumn) (1990) 51–52.Google Scholar
  41. 41.
    Naik, G. & Gleason, J. E., An improved soy-processing technology to help alleviate protein malnutrition in India. Food Nutr. Bull., 10(1988) 45–49.Google Scholar
  42. 42.
    Mittal, G. S. & Usborne, W. R., Meat emulsion extenders. Food Technol., 39(1985) 121–130.Google Scholar
  43. 43.
    Marshall, W. E., Bitterness in soy and methods for its removal. In Bitterness in Foods and Beverages, ed. R. L. Rousseff. Elsevier, Amsterdam, 1990, pp. 275–291.Google Scholar
  44. 44.
    Chang, S. S., Huang, A.-S. & Ho C.-T., Isolation and identification of bitter compounds. In Bitterness in Foods and Beverages, ed. R. L. Rousseff. Elsevier, Amsterdam, 1990, pp. 267–274.Google Scholar
  45. 45.
    Speer, K. & Montag, A. Phenylalanine decomposition products as flavour compounds in honey. Dtsch. Lebensm. Runds., 83(1987) 103–107.Google Scholar
  46. 46.
    Friend, B. A., Gierhart, D. L. & O’Brien, J. K., Process for reducing the level of objectionable flavors in vegetable protein by microorganism contact. US patent 46–42 236(1987).Google Scholar
  47. 47.
    Homma, S. & Fujimaki, M., Lipid in the soy protein isolate with beany flavour compounds. Nutr. Sci. Soy Protein, 6(1985) 7–10.Google Scholar
  48. 48.
    Eldridge, A. C., Friedrich, J. P., Warner, K. & Kwolek, W. F., Preparation and evaluation of supercritical carbon dioxide defatted soybean flakes. J. Food Sci., 51(1986) 584–587.CrossRefGoogle Scholar
  49. 49.
    Sevenants, M. R. Removal of textured vegetable product off-flavor by supercritical fluid or liquid extraction. US Patent 4675 198 (1987).Google Scholar
  50. 50.
    McDaniel, M. R. & Chan, N., Masking of soy protein flavor by tomato sauce. J Food Sci., 53(1988) 93–96, 101.CrossRefGoogle Scholar
  51. 51.
    Fuke, Y. & Matsuoka, H., Changes in proteins and protease activities during ripening of cheese-like products from soy milk using Penicillium caseicolum. J Jpn. Soc. Food Sci. Tech. (Nipp. Shok. Kog. Gakk.), 34(1987) 826–833.CrossRefGoogle Scholar
  52. 52.
    Palielo, M. M. B., Reddy, K. V. & Da Silva, R. S. F., Calcium sulphate as organoleptic coadjuvant in the formulation of soy-whey yoghurt. Lebensm.Wiss.-Technol., 20(1987) 155–157.Google Scholar
  53. 53.
    Moller, J. L., Dairylike beverages produced from soya protein concentrate. In Proceedings of the 3rd European Conference on Ingredients and Additives.Nov. 1988, Vol II, Food Ingredients Europe.Google Scholar
  54. 54.
    Kotula, A. W. & Berry, B. W., Addition of soy proteins to meat products. In Plant Proteins: Applications, Biological Effects, and Chemistry, ed. R. L. Ory. American Chemical Society, Washington D.C., 1986, pp. 74–89.CrossRefGoogle Scholar
  55. 55.
    Young, L. S., Taylor, G. A. & Bonkowski, A., Use of soy protein products in injected and absorbed whole muscle meats. In Plant Proteins: Applications, Biological Effects and Chemistry, ed. R. L. Ory, American Chemical Society, Washington D.C., 1986, pp. 90–98.CrossRefGoogle Scholar
  56. 56.
    Einig, R. G. & Bailey, M. E., Soy proteins and thermal generation of alkylpyrazines in meat flavor. In Thermal Generation of Aromas, ed. T. H. Parliment, R. J. McGorrin & C-T. Ho. American Chemical Society, Washington D.C., 1989, pp. 479–486.CrossRefGoogle Scholar
  57. 57.
    Padda, G. S., Kesava Rao, V., Keshri, R. C., Sharma, N. & Sharma, B. D., Studies on physico-chemical & organoleptic properties of ham patties extended with texturised soy proteins. J. Food Sci. Technol. Mysore, 22(1985) 362–365.Google Scholar
  58. 58.
    Stuhlberger, L. & Kotter, L. H. C., Use of soy isolates, soy concentrates and soy flours; soy protein in manufacture of Bruhwurst sausages. Fleischerei, 41(1990) 41–44.Google Scholar
  59. 59.
    Keeton, J. T., Foegeding, E. A. & Patana-Anake, C., A comparison of non-meat proteins, sodium tripolyphosphate and processing temperature effects on physical and sensory properties of frankfurters. J. Food Sci., 49(1984) 1462–1465 & 1474.CrossRefGoogle Scholar
  60. 60.
    Baltic, M. & Babic, L., Tracing of vegetal proteins in meat products by resorting to methods of SOS-Page electrophoresis. Technol. Mesa, 28(1987) 34–37.Google Scholar
  61. 61.
    Wang, H. L., Uses of soybeans as foods in the west with emphasis on Tofu and Tempeh. In Plant Proteins: Applications, Biological Effects, and Chemistry, ed. R. L. Ory. American Chemical Society, Washington D.C., 1986, pp. 45–60.CrossRefGoogle Scholar
  62. 62.
    Motohiro, T. & Taniguchi, H., Effect of soy protein isolate on food quality of fish gels. In Recent Advances in Food Science & Technology, Vol 2; Oriental foods, meat and fishery products, food chemistry and engineering, proceedings of a symposium, Taipei, 1980, ed. S. M. Chang. Hua Shiang Yuan Publ. Co., 1981, pp. 63–68.Google Scholar
  63. 63.
    Shehata, N. A., Ibrahim, A. A. & Ghali, N., Effect on protein quality of supplementing wheat flour with soy protein concentrate in making Egyptian pastries. Nahrung, 33(1989) 753–759.Google Scholar
  64. 64.
    Schultz, M., Hoppe, K. & Schmandke, H., Off-flavour reduction in Vicia faba bean protein isolate. Food Chem., 30(1988) 129–135.CrossRefGoogle Scholar
  65. 65.
    Klein, B. P. & Raidl, M. A., Use of field-pea flours as protein supplements in foods. In Plant Proteins: Applications, Biological Effects, and Chemistry, ed. R. L. Ory. American Chemical Society, Washington D.C., 1986, pp. 19–31.CrossRefGoogle Scholar
  66. 66.
    McWatters, K. H., Use of peanut and cowpea flours in selected fried and baked foods. In Plant Proteins: Applications, Biological Effects, and Chemistry, ed. R. L. Ory. American Chemical Society, Washington D.C., 1986, pp. 8–19.CrossRefGoogle Scholar
  67. 67.
    Vavreinova, S., Application possibilities of leaf protein in human nutrition. Prum. Potravin, 35(1984) 321–322.Google Scholar
  68. 68.
    Favati, R., Fiorentini, R. & Galoppini, C., Pigment extraction from alfaita protein concentrates, Acta Aliment., 17(1988) 239–244.Google Scholar
  69. 69.
    Yamanishi, T., Bitter compounds in tea. In Bitterness in Foods and Beverages, ed. R. L. Rousseff. Elsevier, Amsterdam, 1990, pp. 159–167.Google Scholar
  70. 70.
    King, G. A., Henderson, K. G., O’Donoghue, E. M., Martin, W. & Lill, R. E., Flavour and metabolic changes in asparagus during storage. Sci. Hortic., 36(1988) 183–190.CrossRefGoogle Scholar
  71. 71.
    Byrne, M., Whatever happened to new protein? Food Manuf., 63(1988) 51–54 & 57.Google Scholar
  72. 72.
    Deger, H.-M. & Fricke, U. Process for obtaining a microbial protein isolate with particular properties. European Patent Appl. 0 207 423 A2 (DE) 29.6.85.Google Scholar
  73. 73.
    Kurihara, Y., Ookubo, K. & Halpern, B. P., Purification and chemical structure of taste modifiers: taste-modifying protein and ziziphin. ISOT IX/ AChemS VII Abstracts, p. 626.Google Scholar
  74. 74.
    Ogata, C., Hatada, M., Tomlinson, G., Shin, W-C. & Kim, S.-H., Crystal Structure of the intensely sweet protein monellin. Nature, 328(1987) 739–742.CrossRefGoogle Scholar
  75. 75.
    Weickmann, J. L., Lee, J-H., Blair, L. C., Ghosh-Dastidar, P. & Koduri, R. K., Exploitation of genetic engineering to produce novel protein sweeteners. In Progress in Sweeteners, ed. T. H. Grenby. Elsevier Science Publishers Ltd., London, 1989, pp. 47–69.Google Scholar
  76. 76.
    Osnabrugge, W. van, How to flavor baked goods and snacks effectively. Food Technol., 43(1989) 74–82.Google Scholar
  77. 77.
    Dumont, J. P., Flavour-protein interactions: a key to aroma persistence. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, 1987, pp. 143–159.Google Scholar
  78. 78.
    Noar, S. R., Reversible protein: flavour interactions and their effect on sensory perception. Diss. Abstr. Int. B, 46(1986) 2893.Google Scholar
  79. 79.
    Solms, J., Interactions of non-volatile and volatile substances in foods. In Interactions of Food Components, ed. G. G. Birch & M. G. Lindley. Elsevier Applied Science Publishers, London, 1986, pp. 189–210.Google Scholar
  80. 80.
    Malcolmson, L. J. & McDaniel, M. R. & Hoehn, E., Flavor protein interactions in a formulated soup containing flavored soy protein. J. Can. Inst. Food Sci. Technol., 20(1987) 229–235.Google Scholar
  81. 81.
    Jasinski, & Kilara, A., Flavor binding by whey proteins. Milchwissenschaft, 40(1985) 596–599.Google Scholar
  82. 82.
    Kim, H. & Min, D. B., Interaction of flavor compounds with protein. In Interactions of Food Components, ed. G. G. Birch & M. G. Lindley, Elsevier Applied Science Publishers, London, 1986, pp. 404–420.Google Scholar
  83. 83.
    Land, D. G. & Reynolds, J., The influence of food components on the volatility of diacetyl. In Flavour ‘81: Proceedings of the 3rd Weurman Symposium, ed. P. Schreier. Walter de Gruyter, 1981, pp. 701–705.Google Scholar
  84. 84.
    Voilley, A., Fares, K. & Lorient, D., Aroma retention during air-drying of protein solutions. In Advances in Food Technology, Vol 2, Proceedings of the 2nd World Congress of Food Technology, Barcelona, 1987, ed. E. Primo Yufera & P. Fito Maupoey, pp. 1157–1167.Google Scholar
  85. 85.
    Ng, P. K. W., Hoehn, E. & Bushuk, W., Binding of vanillin by fababean proteins. J. Food Sci., 54(1989) 105–107.CrossRefGoogle Scholar
  86. 86.
    Ng, P. K. W., Hoehn, E. & Bushuk, W., Sensory evaluation of binding of vanillin by fababean proteins. J. Food Sci., 54(1989) 324–325 & 346.CrossRefGoogle Scholar
  87. 87.
    Dumont, J. P., Diacetyl retention by pea proteins: effect of physical treatments. In Progress in Flavour Research 1984, Proceedings of the 4th Weurman Flavour Research Symposium, Dourdan, France 1984, ed. J. Adda. Elsevier Science Publishers, Amsterdam, 1984, pp. 501–504.Google Scholar
  88. 88.
    Schnepf, M. I. & Satterlee, L. D. The interaction of iron with proteins and peptides. In Interactions of Food Components, ed. G. G. Birch & M. G. Lindley, Elsevier, London, 1986, pp. 43–63.Google Scholar
  89. 89.
    Clifford, M. N., Phenol-protein interactions and their possible significance for astringency. In Interactions of Food Components, ed. G. G. Birch & M. G. Lindley, Elsevier, London, 1968, pp. 143–163.Google Scholar
  90. 90.
    Seshadri, R. & Dhanraj, N., Flavour interactions in tea. In Frontiers of Flavour, Proceedings of the 5th International Flavour Conference, 1987, ed. G. Charalambous. Elsevier, Amsterdam, 1988, pp. 169–180.Google Scholar
  91. 91.
    Law, B. A., Flavour development in cheeses. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, ed. F. L. Davies, & B. A. Law. Elsevier Applied Science Pubs. Ltd., London, 1984, pp. 187–208.Google Scholar
  92. 92.
    Buckholz, L. & Stypula, R. J., Flavour-retaining food product. European patent application 0 306 000 A2 (1988).Google Scholar
  93. 93.
    Patel, M. M. & Dave, J. C., Chewing gum containing sweet protein and salt. International Patent no. WO 89/02703 Al (1989).Google Scholar
  94. 94.
    Kurihara, Y., Method for stabilizing taste-modifier. European Patent Appl. 0 347 832 (1989).Google Scholar
  95. 95.
    Ensor, D. R., The contribution of flavor chemistry to the foods industry. In Flavor Chemistry of Lipid Foods, ed. D. B. Min & T. H. Smouse. The American Oil Chemists’ Society, Champaign, Ill. 1989, pp. 1–12.Google Scholar
  96. 96.
    Kato, H., Rhue, M. R. & Nishimura, T., Role of free amino acids and peptides in food taste. In Flavor chemistry: Trends and developments, ed. R. Teranishi et al.American Chemical Society, Washington D.C., 1989, pp. 158–174.CrossRefGoogle Scholar
  97. 97.
    Nishimura, T. & Kato, H., Taste of free amino acids and peptides. Food Rev. Int., 4(1988) 175–194.CrossRefGoogle Scholar
  98. 98.
    Lancaster, J. E. & Shaw, M. L., γ-Glutamyl peptides in the biosynthesis of S-alk(en)yl-L-cysteine sulphoxides (flavour precursors) in Allium. Phytochemistry, 28(1989) 455–460.CrossRefGoogle Scholar
  99. 99.
    Basha, S. M. & Young, C. T., Changes in the polypeptide composition of peanut (Arachis hypogaea L.) seed during oil roasting. J. Agric. Food Chem., 33(1985) 350–354.CrossRefGoogle Scholar
  100. 100.
    Hammond, E. G., The flavors of dairy products. in Flavor Chemistry of Lipid Foods, ed. D. B. Min & T. H. Smouse. The American Oil Chemists’ Society, Champaign, Illinois, 1989, pp. 222–236.Google Scholar
  101. 101.
    Sohn, K.-H. & Lee, H.-J., Bitter peptides derived from alphasubscriptland beta-casein digested with alkaline protease from Bacillus subtilis. Korean J. Food Sci. Tech., 20(1988) 659–665.Google Scholar
  102. 102.
    Cliffe, A. J. & Law, B. A., Peptide composition of enzyme-treated Cheddar cheese slurries, determined by reverse phase high performance liquid chromatography. Food Chem., 36(1990) 73–80.CrossRefGoogle Scholar
  103. 103.
    Ishibashi, N., Ono, I., Kato, K., Shigenaga, T., Shinoda, I., Okai, H. & Fukui, S., Role of the hydrophobic amino acid residue in the bitterness of peptides. Agric. Biol. Chem., 52(1988) 91–94.CrossRefGoogle Scholar
  104. 104.
    Ishibashi, N., Kubo, T., Chino, M., Fukui, H., Shinoda, I., Kikuchi, E., Okai, H. & Fukui S., Taste of proline-containing peptides. Agric. Biol. Chem., 52(1988) 95–98.CrossRefGoogle Scholar
  105. 105.
    Ishibashi, N., Sadamori, K., Yamamoto, O., Kanehisa, H., Kouge, K., Kikuchi, E, Okai, H. & Fukui S., Bitterness of phenylalanine- and tyrosine containing peptides. Agric. Biol. Chem., 51(1987) 3309–3313.CrossRefGoogle Scholar
  106. 106.
    Ishibashi, N., Bitterness of leucine-containing peptides. Agric. Biol. Chem., 51(1987) 2389–2394.CrossRefGoogle Scholar
  107. 107.
    Nosho, Y., Otagiri, K., Shinoda, I. & Okai, H., Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. II. Agric. Biol. Chem., 49(1985) 1829–1837.CrossRefGoogle Scholar
  108. 108.
    Shinoda, I., Nosho, Y, Kouge, Ishibashi, N, Okai, H., Tatsumi, K. & Kikuchi, E., Variation in bitterness potency when introducing Gly-Gly residue into bitter peptides. Agric. Biol. Chem., 51(1987) 2103–2110.CrossRefGoogle Scholar
  109. 109.
    Shinoda, I., Nosho, Y., Otagiri, K., Okai, H. & Fukui, S., Bitterness of diastereometers of a hexapeptide Agric. Biol. Chem., 50(1986) 1785–1790.CrossRefGoogle Scholar
  110. 110.
    Shinoda, I., Fushimi, A., Kato, H., Okai, H. & Fukui, S., Bitter taste of synthetic C-terminal tetradecapeptide of bovine beta-casein. Agric. Biol. Chem., 49(1985) 2587–2596.CrossRefGoogle Scholar
  111. 111.
    Shinoda, I., Tada, M., Okai, H., & Fukui, S., Bitter taste of H-Pro-Phe-Pro-Gly-Pro-Ile-Pro-OH corresponding to the partial sequence. Agric. Biol. Chem., 50(1986) 1247–1254.CrossRefGoogle Scholar
  112. 112.
    Shinoda, I., Okai, H. & Fukui, S., Bitter taste of H-Val-Val-Val-Pro-Pro-Phe-Leu-OH corresponding to the partial sequence. Agric. Biol. Chem., 50(1986) 1255–1260.CrossRefGoogle Scholar
  113. 113.
    Adler-Nissen, J., Bitterness intensity of protein hydrolysates-chemical and organoleptic characterization. In Frontiers of Flavor, ed. G. Charalambous. Conference, Chalkidiki, Greece, 1–3 July 1987. Elsevier Science Publishers, Amsterdam, 1988, pp. 63–77.Google Scholar
  114. 114.
    Ney, K. H., Cocoa flavour-bitter compounds as its essential taste components. Gordian, 86(1986) 84–88.Google Scholar
  115. 115.
    Ohayama, S., Ishibashi, N., Tamura, M., Nishizaki, H. & Okai, H., Synthesis of bitter peptides composed of aspartic acid and glutamic acid. Agric. Biol. Chem., 52(1988) 871–872.CrossRefGoogle Scholar
  116. 116.
    Ishibashi, N., Kouge, K., Shinoda, I., Kanehisa, H. & Okai, H., A mechanism for bitter taste sensibility in peptides. Agric. Biol. Chem., 52(1988) 819–827.CrossRefGoogle Scholar
  117. 117.
    Saroli, A., Structure-activity relationship of bitter compounds related to denatonium chloride and dipeptide methyl esters. Z. Lebens. Unt. Forsch., 182(1986) 118–120.CrossRefGoogle Scholar
  118. 118.
    Ney, K. H., A program for IBM 8-compatible PC ‘F’ predicting the bitterness of peptides, especially in protein hydrolysates. Alimenta, 28(1989) 9–13.Google Scholar
  119. 119.
    Behnke, U., Importance of peptides from enzymatically degraded proteins as components of foods. Nahrung, 29(1985) 979–992.CrossRefGoogle Scholar
  120. 120.
    Mogensen, L. & Adler-Nissen, J., Evaluating bitterness masking principles by taste panel studies. In Frontiers of Flavor.Proceedings of the 5th International Flavor Conference, Chalkidiki, Greece, 1987. Elsevier Science Publishers, Amsterdam, 1988, pp. 79–87.Google Scholar
  121. 121.
    Minagawa, E., Kaminogawa, S., Tsukasaki, F. & Yamauchi, K., Debittering mechanism in bitter peptides of enzymatic hydrolysates from milk casein by aminopeptidase T. J. Food Sci., 54(1989) 1225–1229.CrossRefGoogle Scholar
  122. 122.
    Pawlett, D. & Fullbrook, P., Production of natural protein-based flavour and hydrolysates using amino peptidase enzymes. In Proceedings of the 3rd European Conference on Ingredients and Additives Nov 1988, Vol. I, ed. by Food Ingredients Europe.Google Scholar
  123. 123.
    Tamura, M., Mori, N., Miyoshi, T., Koyama, S., Kohri, H., & Okai, H., Practical debittering using model peptides and related compounds. Agric. Biol. Chem., 54(1990) 41–51.CrossRefGoogle Scholar
  124. 124.
    Umetsu, H. & Ichishima, E., Mechanism of digestion of bitter peptides from soybean protein by wheat carboxypeptidase. Nipp. Shok. Kog. Gakk., 35(1988) 440–447.CrossRefGoogle Scholar
  125. 125.
    Janusz, J. M., Peptide sweeteners beyond aspartame. In Progress in Sweeteners, ed. T. H. Grenby. Elsevier, Amsterdam, 1989, pp. 1–46.Google Scholar
  126. 126.
    Zanno, P. R., L-Aminodicarboxylic acid esters. US Patent 4 766 246 (1988).Google Scholar
  127. 127.
    Lok, S. M. I. Synthesis of high potency congener derivative of isoproterenol. II. Stereoisomeric approach to the molecular basis of taste. Diss. Abstr. Int. B., 49(1989) 3675 B.Google Scholar
  128. 128.
    Aso, K., Enzymatic approach to the synthesis of a lysine-containing sweet peptide, N-acetyl-L-phenylalanyl-L-lysine. Agric. Biol. Chem., 53(1989) 729–733.CrossRefGoogle Scholar
  129. 129.
    Tamura, M., Nakatsuka, T., Tada, M., Kawasaki, Y., Kikuchi, E. & Okai, H. The relationship between taste and primary structure of ‘delicious peptide’ (Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala) from beef soup. Agric. Biol. Chem., 53(1989) 319–325.CrossRefGoogle Scholar
  130. 130.
    Okai, H., An enhanced effect of peptides and their analogues on saltiness of sodium chloride. J. Jpn. Soc. Food Sci. Tech. (Nipp. Shok. Kog. Gakk), 36(1989) 769–776. (FSTA Abstract 22(7) 7 T 27 (1990).)CrossRefGoogle Scholar
  131. 131.
    Kawasaki, Y., Seki, T., Tamura, M., Kikuchi, E., Tada, M. & Okai, H., Glycine methyl or ethyl ester hydrochloride as the simplest examples of salty peptides and their derivatives. Agric. Biol. Chem., 52(1988) 2679–2681.CrossRefGoogle Scholar
  132. 132.
    Anon. Salt-free salt. Nutr. Rev., 43(1985) 337–338.Google Scholar
  133. 133.
    Agnes, G. & Altamura, M. Taurine derivatives. British Patent Appl. 2 193 206 A (31.7.86) (1986).Google Scholar
  134. 134.
    Huynh-ba, T., Philippossian, G., Alleged salty taste of L-ornithyltaurine monohydrochloride. J. Agric. Food Chem., 35(1987) 165–168.CrossRefGoogle Scholar
  135. 135.
    Seki, T., Kawasaki, Y., Tamura, M., Tada, M. & Okai, H., Further study on the salty peptide ornithyl-beta-alanine. Some effects of pH and additive ions on the saltiness. J. Agric. Food Chem., 38(1990) 25–29.CrossRefGoogle Scholar
  136. 136.
    Kimura, S., Yokomukai, Y. & Komai, M., Salt consumption and nutritional state especially dietary protein level. Am. J. Clin. Nutr., 45(1987) 1271–1276.Google Scholar
  137. 137.
    Weir, G. S. D., Protein hydrolysates as flavourings. In Developments in Food Proteins, Vol. 4, ed. B. J. F. Hudson. Elsevier Applied Science Publishers, London, 1986, pp. 175–217.Google Scholar
  138. 138.
    Lieske, B. & Konrad, G., Process for manufacture of modified protein hydrolysates with a chicken meat flavour. GDR patent no DD 260 387 (1988).Google Scholar
  139. 139.
    Nitta Gelatin, Preparation of seasoning. Japanese patent 263783. (Unilever Patent Abstract 90–168330/22).Google Scholar
  140. 140.
    Kolbeck, W., Pyttlik, H. & Grasis, M. Product for Proteolysis. International patent WO 88/07822 (1988).Google Scholar
  141. 141.
    Rooij, J. F. J. de, & Meakins, S. E., Improved protein hydrolysate. European patent application 0 209 921 Al (1987).Google Scholar
  142. 142.
    Miura, H., Nishiyama, K., Katsuragi, T. & Akatsuka, S., Preparation of new seasoning by hydrolysis of mixture of animal and plant protein materials. Nipp. Shok. Kog. Gakk., 34(1987) 98–101.CrossRefGoogle Scholar
  143. 143.
    Dzanic, H., Protein hydrolysates from soy grits and dehydrated alfalfa flour. J. Agric. Food Chem., 33(1985) 683–685.CrossRefGoogle Scholar
  144. 144.
    Belohlawek, L., Process and product of making a vegetable protein hydrolysate food seasoning. US patent 4 798 736 (1989).Google Scholar
  145. 145.
    May, C. G., Process flavourings. In Food Flavourings, ed. P. R. Ashurst, Blackie & Son Ltd., 1990, pp. 257–301.Google Scholar
  146. 146.
    Faesi, R., Werner, G. & Wolfensberger, U. Process for the production of seasoning. UK patent application 2 183 659 A (1987).Google Scholar
  147. 147.
    Duxbury, D. D. 40% less sodium in naturally brewed ‘lite’ soy sauce. Food Process., 52(1991) 96, 98.Google Scholar
  148. 148.
    Fullbrook, P., Pawlett, P. & Parker, D., Protein plus. Food Process., 56(1987) 11–13.Google Scholar
  149. 149.
    Parker, D. M. & Pawlett, D., Flavour control of protein hydrolysates. European patent application 0 223 560 (UK) (14.11.85) (1985).Google Scholar
  150. 150.
    Godfrey, T., Enzyme modifications for baked goods and flavour proteins. Eur. Food Drink Rev., Autumn (1990) 43–44, 46, 48.Google Scholar
  151. 151.
    Krasnobajew, V., Mor, J.-R., Steiner, R. & Keller, A., Method for preparing new coffee aromas. International patent WO 86/03943 (1986).Google Scholar
  152. 152.
    Behnke, V., Ackermann, E. & Ruttloff, H., Production and utilisation of enzymic protein hydrolysate from meat residues from bones from mechanical deboning. I. Investigation of the enzymic hydrolysis of meat residues. Nahrung, 28(1984) 397–407.CrossRefGoogle Scholar
  153. 153.
    Lieske, B. & Konrad, G., Process for preparation of a flavour preparation with a chicken-like flavour. GDR patent DD 260 648 (1988).Google Scholar
  154. 154.
    Duwe, H., Kreuter, T., Lehwald, U. & Malter, M., Process for preparation of a non-bitter, fully water-soluble and non-acid precipitable partial hydrolysate of microbial protein. GDR patent DD 267 659 (1989).Google Scholar
  155. 155.
    Vegarud, G. E. & Langsrud, T., The level of bitterness and solubility of hydrolysates produced by controlled proteolysis of caseins. J. Dairy Res., 56(1989) 375–379.CrossRefGoogle Scholar
  156. 156.
    Heyland, S., Fournet, G. & Bosch, H., Cheese flavoring product. US patent 4 544 568 (1985).Google Scholar
  157. 157.
    Heyland, S., Fournet, G. & Boesch, H., A flavouring product. UK patent application 2 151 897 A. (Switzerland) (29.12.85).Google Scholar
  158. 158.
    Kilara, A., Enzyme-modified food ingredients. Process Biochem., 20(1985) 149–157.Google Scholar
  159. 159.
    Rebeca, B. D., Pena-Vera, M. T. & Diaz-Castaneda, M., Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value. J. Food Sci., 56(1991) 309–314.CrossRefGoogle Scholar
  160. 160.
    Faigh, J. G., Stuart, M. J. & Talbott, L. L., Enzymatic hydrolysis of proteins. European Patent EP 0 325 986 A2 (1989).Google Scholar
  161. 161.
    Slocum, S. A., Jasinski, E. M., Anantheswaran, R. C. & Kilara, A., Effect of sucrose on proteolysis in yoghurt during incubation and storage. J. Dairy Sci., 71(1988) 589–595.CrossRefGoogle Scholar
  162. 162.
    Anon. Salt booster brings no sodium burden. Dairy Foods, 89(1988) 53.Google Scholar
  163. 163.
    Anon. Salt alternatives brew in marketplace. Prep. Foods, 157(1988) 242.Google Scholar
  164. 164.
    Anon. YMR, a flavor enhancer (Ingredient shown at the New Orleans Food Expo). Prep. Foods, 157(1988) 138.Google Scholar
  165. 165.
    Anon. Dried yeast protein enhances flavour. Confect. Manuf., 23(1986) 18.Google Scholar
  166. 166.
    Anon. Yeast protein enhances flavours and nutrition. Food Process.UK, 55(1986) 13–14.Google Scholar
  167. 167.
    Mezeine Dudonisz, W., Functional properties of yeast derivatives and their application in the meat industry. Husipar Minosegugyi Leanvvallata, Budapest, (1988) (1) pp. 4–8. (FSTA Abstracts 22(2) 2 S 117 1990).Google Scholar
  168. 168.
    Miteva, E., Kirova, E., Gadjeva, D. & Radeva, M., Sensory aroma and taste profiles of raw-dried sausages manufactured with a lipolytically active yeast culture. Nahrung, 30(1986) 829–832.Google Scholar
  169. 169.
    Adamek, L., Rybarova, J., Rut, M., Karnet, J. & Stros, F., Manufacture of yeast autolysate. Czechoslovak Patent DS 256 863 (1988).Google Scholar
  170. 170.
    McCormick, R., The year of the yeast: yeast’s sensory potential makes possible new applications. Prep. Foods, 156(1987) 153–154.Google Scholar
  171. 171.
    Duxbury, D. D., Descriptive flavor analysis panel provides sophisticated service, product application concepts. Food Process. US, 51(1990) 54, 56, 58.Google Scholar
  172. 172.
    Steinkraus, K. H., Indigenous fermented-food technologies for small-scale industries. Food Nutr. Bull., 7(1985) 21–27.Google Scholar
  173. 173.
    Hartman, T. G. & Rosen, R. T., Determination of ethyl carbamate in commercial protein based condiment sauces by gas chromatography-mass spectrometry. J. Food Safety, 9(3) (1989) 173–182.CrossRefGoogle Scholar
  174. 174.
    Thibault, P. A. & Monsan, P. F., Process for debittering of protein hydrolysates and the product so produced. French Patent Application FR 2 625 651 Al (1989).Google Scholar
  175. 175.
    Lieske, B., Konrad, G. & Schulze, W., Manufacture of protein hydrolysates with modified flavour, GDR Patent DD 217 981 (1985).Google Scholar
  176. 176.
    Hardy, P. M., Protein amino acids. In Chemistry and Biochemistry of Amino Acids, ed. G. C. Barrett. Chapman & Hall, London, 1985, pp. 6–24.CrossRefGoogle Scholar
  177. 177.
    Guion, P., Umami: an independent basic taste-a 20th century phenomenon. Eur. Food Drink Rev., Summer (1989) 33–35.Google Scholar
  178. 178.
    Takama, R., Ishu, H. & Muraki, S., Quality changes of salted Chinese cabbages during storage and by freeze-drying. J. Jpn. Soc. Food Sci. Tech. (Nipp. Shok. Kog. Gakk.), 33(1986) 701–707.CrossRefGoogle Scholar
  179. 179.
    Itabashi, M., On the change of relative content of tasty and non-tasty amino acids during pickling process of Sunki-pickles. J. Jap. Soc. Food Sci. Tech. (Nipp. Shok. Kog. Gakk.), 35(1988) 111–114.CrossRefGoogle Scholar
  180. 180.
    Hawer, W. D. S., Ha, J. H., Seog, H. M., Nam, Y. J. & Shin, D. W., Changes in taste and flavour compounds of kimchi during fermentation. Korean J. Food Sci. Tech., 20(1988) 511–517.Google Scholar
  181. 181.
    Kitamoto, K., Miyake, M., Kohno, M., Watanabe, S., Takahashi, K., Totsuka, A. & Nakamura, K., Brewing of sake with excellent taste and flavour. II Inorganic components in rice germ affecting reduction of amino acid content in sake moroni mash. J. Brewing Soc. Japan (Nipp. Jozo Kyokai Zasshe), 90(1985) 59–63.Google Scholar
  182. 182.
    Kirchhof, P.-M., Biehl, B. & Crone, G., Peculiarity of the accumulation of free amino acids during cocoa fermentation. Food Chem., 31(1989) 295–311.CrossRefGoogle Scholar
  183. 183.
    Dubois, J. & Fabre, J., Composition having a salty flavour. French Patent Application FR 547 992 Al (1985).Google Scholar
  184. 184.
    Cha, Y. J. & Lee, E. H., Studies on the processing of low salt fermented sea foods. VI Taste compounds of low salt fermented anchovy and yellow corvenia. Bull. Korean Fisheries Soc., 18(1985) 325–332.Google Scholar
  185. 185.
    Konosu S., Watanabe, K., Koriyama, T., Shirai, T. & Yamaguchi, K., Extractive components of scallop and identifications of its taste-active components by omission test. J. Jpn. Soc. Food Sci. Tech. (Nipp. Shok. Kog. Gakk.), 35(1988) 252–258.CrossRefGoogle Scholar
  186. 186.
    Tsen, H. Y. & Sun, S-T., Analysis of the taste extract of grass shrimp-the relationship between amino acid composition and proteases activity. J. Chinese Agric. Chem. Soc., 25(1987) 140–149.Google Scholar
  187. 187.
    Marui, T. & Kiyohara, S., Structure-activity relationships and response features for amino acids in fish taste. Chem. Senses, 12(1987) 265–275.CrossRefGoogle Scholar
  188. 188.
    Doving, K. B., Flavouring fish food. In Flavour Science and Technology, ed. M. Martens, G. A., Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 253–258.Google Scholar
  189. 189.
    Tamura, M., Seki, T., Kawasaki, Y., Tada, M., Kikuchi, E. & Okai, H., An enhancing effect on the saltiness of sodium chloride of added amino acids and their esters. Agric. Biol. Chem., 53(1989) 1625–1633.CrossRefGoogle Scholar
  190. 190.
    Ito, T., Sugawara, E., Miyanohara, J. I., Sakurai, Y. & Odagiri, S., Effect of amino acids as nitrogen sources on microbiological formation of pyrazines. J. Jap. Soc. Food Sci. Tech (Nipp. Shok. Kog. Gakk.), 36(1989) 762–764.CrossRefGoogle Scholar
  191. 191.
    Shu, C.-K., Hagedorn, M. L., Mookherjee, B. D. & Ho, C.-T., Volatile components of the thermal degradation of cystine in water. J. Agric. Food Chem., 33(1985) 438–442.CrossRefGoogle Scholar
  192. 192.
    Baltes, W. & Bochmann, G., Model reactions on roast aroma formation. IV Mass spectrometric identification of pyrazines IV. Z. Lebensm. Unt. Forsch., 184(1987) 485–493.CrossRefGoogle Scholar
  193. 193.
    Shu, C.-K., Study of the reaction between cystine and 2,5-dimethy1–4hydroxy-3(2H)-furanone. Diss. Abstr. Int. B, 5(1985).Google Scholar
  194. 194.
    Shu, C.-K. & Ho, C.-T., Effect of pH on the volatile formation from the reaction between cysteine and 2,5-dimethy1–4-hydroxy-3(2H)-furanone. J Agric. Food Chem., 36(1988) 801–803.CrossRefGoogle Scholar
  195. 195.
    Kemp, S. E. & Birch, G. G., Tastes and solution properties of enantiomeric amino acids. Chem. Senses, 14(1989) 214.Google Scholar
  196. 196.
    Wong, D. W. S., Sweeteners. In Mechanism and Theory in Food Chemistry, ed. D. W. S. Wong. Van Nostrand Reinhold, New York, 1989, pp. 264–282.Google Scholar
  197. 197.
    Kemp, S. E. & Birch, G. G., Structure, solution properties and sensory characteristics of amino acid molecules. Chem. Senses, 13(1988) 703.Google Scholar
  198. 198.
    Birch, G. G. & Kemp, S. E., Apparent specific volumes and tastes of amino acids. Chem. Senses, 14(1989) 249–258.CrossRefGoogle Scholar
  199. 199.
    King, B. M., Flavour, the key to success for high-protein foods. In Food Acceptance and Nutrition, ed. J. Solms et al.Conference 7–10 April 1987, Academic Press, London, 1987, pp. 79–97.Google Scholar
  200. 200.
    Manning, D. J., Ridout, E. E. &Price, J. C., Non-sensory methods for cheese flavour assessment. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, ed. F. L. Davies & B. A. Law. Elsevier Applied Science Publishers, London, 1984. pp. 229–254.Google Scholar
  201. 201.
    Teranishi, R., New trends and developments in flavor chemistry; an overview. In Flavor Chemistry Trends and Developments, ed. R. Teranishi. ACS Symposium Series, American Chemical Society, 1989, pp. 1–6.CrossRefGoogle Scholar
  202. 202.
    Pangborn, R. M., Sensory science in flavour research: achievements, needs and perspectives. In Flavour Science and Technology, Proceedings of the 5th Weurman Flavour Research Symposium, 1987, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley. Chichester. 1987. pp. 275–289.Google Scholar
  203. 203.
    Montange, J.-Y., O’Halloran, S. & Strinsjo, H., Sensory data collection and evaluation with SENSTEC, a novel approach. In Flavour Science & Technology, Proceedings of the 5th Weurman Flavour Research Symposium, 1987, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 543–548.Google Scholar
  204. 204.
    Roos, P. E., Dijksterhuis, G. B. & Punter, P. H. Automation of sensory analysis-new developments. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 541–542.Google Scholar
  205. 205.
    Eriksson, C., Chemistry in flavour research, achievements, needs and perspectives. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 5–21.Google Scholar
  206. 206.
    Wong, D. W. S., Flavors. In Mechanism and Theory in Food Chemistry, ed. D. W. S. Wong. Van Nostrand Reinhold, New York, 1989, pp. 231–263.Google Scholar
  207. 207.
    Maga, J. A., Compound structure versus bitter taste. In Bitterness in Foods and Beverages, ed. R. L. Rousseff. Elsevier, Amsterdam, 1990, pp. 35–48.Google Scholar
  208. 208.
    Brieskorn, C. H., Physiological and therapeutical aspects of bitter compounds. In Bitterness in Foods and Beverages, ed. R. L. Rousseff. Elsevier, Amsterdam, 1990, pp. 15–33.Google Scholar
  209. 209.
    Kurihara, K., Recent Progress in the taste receptor mechanism. In Umami, A Basic Taste, ed. Y. Kawamura, & D. M. R. Kare. Marcel Dekker Inc., 1987, pp. 3–39.Google Scholar
  210. 210.
    Schiffman, S. S., Recent insights into the mechanisms of taste transduction and modulation. Food Chem., 21(1986) 259–281.CrossRefGoogle Scholar
  211. 211.
    Overbosch, P., & Soeting, W. J., Temporal aspects of flavoring. In Flavor Chemistry: Trends and Developments, ed. R. Teranishi, ACS Symposium Series, American Chemical Society, 1989, pp. 138–150.CrossRefGoogle Scholar
  212. 212.
    Voirol, E. & Daget, N., Direct nasal and oronasal profiling of a meat flavouring: influence of temperature, concentration and additives. Lebensmitt.-Wise.-u-Tech., 22(1989) 399–405.Google Scholar
  213. 213.
    Overbosch, P., Flavour release and perception. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 291–300.Google Scholar
  214. 214.
    Vernin, G. (ed.), The Chemistry of Heterocyclic Flavouring and Aroma Compounds.Ellis Horwood Ltd., Chichester, 1982.Google Scholar
  215. 215.
    Hwang, S.-S., A study of the reaction flavors. Diss. Abstr. Int. B, 47(1987) 4363–4364.Google Scholar
  216. 216.
    Zhang, Y., Chien, M. & Ho, C. T., Comparison of the volatile compounds obtained from thermal degradation of cysteine and glutathione in water. J. Agric. Food Chem., 36(1988) 992–996.CrossRefGoogle Scholar
  217. 217.
    Rizzi, G. P., New aspects on the mechanism of pyrazine formation in the Strecker degradation of amino acids. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 23–28.Google Scholar
  218. 218.
    Shaath, N. A. & Griffin, P. M., Modern analytical techniques in the flavor industry. In Frontiers of Flavor, Proceedings of the 5th International Flavor Conference, Chalkidiki, Greece, 1–3 July, 1987. Elsevier, Amsterdam, 1988, pp. 89–108.Google Scholar
  219. 219.
    Teranishi, R., Development of methodology for flavor chemistry past, present and future. In Flavor Chemistry of Lipid Foods, ed. D. B. Min & T. H. Smouse. The American Oil Chemists’ Society, Champaign, Ill., 1989, pp. 13–25.Google Scholar
  220. 220.
    Flament, I., Chevallier, C. & Keller, U., Extraction and Chromatography of food constituents with supercritical CO2. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 151–164.Google Scholar
  221. 221.
    Reineccius, G. A., Isolation of food flavours. In Flavor Chemistry of Lipid Foods, ed. D. B. Min & T. H. Smouse. The American Oil Chemists’ Society, Champaign, Ill., 1989, pp. 26–34.Google Scholar
  222. 222.
    Morin, P., Caude, M., Richard, H. & Rosset, R., On-line carbon dioxide SFC-FTIR in aroma research, perspectives and limits. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 165–174.Google Scholar
  223. 223.
    Williams, A. J., Tucknott, O. G., Lewis, M. J., May, H. V. & Wachter, L., Examples of cryogenic matrix isolation GC/IR in the analysis of flavour extracts. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurn Jr. Wiley, Chichester, 1987, pp. 259–271.Google Scholar
  224. 224.
    Mills, O. E., A headspace sampling method for monitoring flavour volatiles of protein products. N. Z. J. Dairy Sci. Tech., 21(1986) 49–56.Google Scholar
  225. 225.
    Koller, W. D., Preconcentration of volatiles by using static-head-space technique for mass spectrometric identification. In Flavour Science & Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 181–184.Google Scholar
  226. 226.
    Baltes, W. & Bochmann, G., Model reactions on roast aroma formation. III. Mass spectrometric identification of pyrroles IV. Z. Lebensm. Unters. Forsch., 184(1987) 478–484.CrossRefGoogle Scholar
  227. 227.
    Baltes, W. & Bochmann, G. Model reactions on roast aroma formation. V. Mass spectrometric identification of pyridines. Z. Lebensm. Unters. Forsch., 185(1987) 5–9.CrossRefGoogle Scholar
  228. 228.
    Al-Tamrah, S. A., Kinetic studies on the determination of pyrroles asnd tryptophan by Ehrlich reaction. Anal. Lett., 22(1989) 387–401.CrossRefGoogle Scholar
  229. 229.
    Lendero, L., The use of capillary gas chromatography combined with headspace sampling technique and computerized retention, index data base for flavour analysis. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 185–186.Google Scholar
  230. 230.
    Leland, J. V., Lahiff, M. & Reineccius, G. A., Predicting intensities of milk off-flavours by multivariate analysis of gas chromatographic data. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 453–468.Google Scholar
  231. 231.
    Persson, T., NMSP-a tool for data collection and data analysis in flavour research. In Flavour Science and Technology, ed. M. Martins, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 549–550.Google Scholar
  232. 232.
    MacFie, H. J. H., Data analysis in flavour research: Achievements, needs and perspectives. In Flavour Science and Technology, ed. M. Martens, G. A. Dalen & H. Russwurm Jr. Wiley, Chichester, 1987, pp. 423–438.Google Scholar
  233. 233.
    Duxbury, D. D., Natural flavor enhancers for microwavable foods. Food Process., 66(1991) 115–116.Google Scholar
  234. 234.
    Duxbury, D. D., Savory natural flavors enhance low-fat foods. Food Process., 66(1991) 100, 102.Google Scholar
  235. 235.
    Duxbury, D. D., Natural beef flavor-delicious in chicken. Food Process., 66(1991) 118, 120.Google Scholar
  236. 236.
    Ratz, W., Flavouring for the food industry. Fleischerei, 39(1988) IV–V.Google Scholar
  237. 237.
    Miller, M. F., Davis, G. W., Seideman, S. C., Wheeler, T. L. & Ramsey, C. B., Extending beef bullock restructured steaks with soy protein, wheat gluten or mechanically separated beef. J. Food Sci., 51(1986) 1169–1172.CrossRefGoogle Scholar
  238. 238.
    Duxbury, D. D., Isolated soy proteins add ‘lite’ image to meat products. Food Process.US, 49(1988) 64, 66.Google Scholar
  239. 239.
    Tuley, L., Sunrise for soya. Food Manuf., 66(1991) 22–24.Google Scholar
  240. 240.
    Endres, J. G. & Monagel, C. W., Non-meat protein additives. In Advances in Meat Research, Vol. 3, ed. A. M. Pearson &; T. R. Dutson. 1987, pp. 331–350.Google Scholar
  241. 241.
    Vallejo-Cordoba, B., Nakai, S., Powrie, W. D. & Beveridge, T., Protein hydrolysates for reducing water activity in meat products. J. Food Sci., 51(1986) 1156–1161.CrossRefGoogle Scholar
  242. 242.
    Vallejo-Cordoba, B., Nakai, S., Powrie, W. D. & Beveridge, T., Extended shelf life of frankfurters and fish frankfurter-analogs with added soy protein hydrolysates. J. Food Sci., 52(1987) 1133–1136.CrossRefGoogle Scholar
  243. 243.
    Duxbury, D. D., ‘High tech’ QFD and TQM programs produce all-natural ingredients. Food Process. US, 60(1991) 46–50.Google Scholar
  244. 244.
    Hoffman, K. & Marggrander, K., Reducing the common salt content of meat products by the use of collagen hydrolysates. Fleischwirtschaft, 69(1) (1989) 23–8, 65.Google Scholar
  245. 245.
    LaBell, F., Milk hydrolysate. Food Process., 51(1990) 102, 104.Google Scholar
  246. 246.
    Marggrander, K., Use of collagen protein hydrolysates. Paste-type spreads for bread. Fleischerei, 40(1989) 229–231.Google Scholar
  247. 247.
    Schenz, Z. F. & Trumbetas, J., Flavour and mouthfeel character of beverages. US Patent 4 615 200 (1986).Google Scholar
  248. 248.
    Szczesniak, A. S. & Schenz, A. F., Improved fruit flavored beverages. European Patent EP 0 117 047 B1 (1987).Google Scholar
  249. 249.
    Braun, S. D. & Olson, N. F., Encapsulation of proteins and peptides in milkfat: encapsulation efficiency and temperature and freezing stabilities. J. Microencapsulation, 3(1986) 125–126.CrossRefGoogle Scholar
  250. 250.
    LaBell, F., Coated flavor enhancer resists enzyme activity. Food Process., 60(1991) 114–115.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • G. S. D. Weir
    • 1
  1. 1.Brooke Bond Foods Ltd.CroydonUK

Personalised recommendations