Advertisement

Applications of Enzymes in Food

  • G. M. Frost

Abstract

World markets for enzymes amount to several hundred million U.S. dollars annually and usuage is dominated by the food industry, which in the early 1980s accounted for about two-thirds of the total sales value, most of the rest being accounted for by detergents. Reed1published a comprehensive account of enzyme use in food up to 1966 and the subject has subsequently been reviewed by Underkofler2and by Peppler & Reed.3

Keywords

Aspergillus Niger Aspergillus Oryzae Glucose Isomerase Dextrose Equivalent Rhizopus Arrhizus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reed, G., Enzymes in Food Processing.Academic Press, New York, 1966.Google Scholar
  2. 2.
    Underkofler, L. A., Enzymes. In CRC Handbook of Food Additives, Vol. 2, 2nd Edn, ed. T. E. Furia. CRC Press, Boca Raton, Florida, 1980, pp. 57– 124.Google Scholar
  3. 3.
    Peppler, H. J. & Reed, G., Enzymes in food and feed processing. In Biotechnology, Vol 7a, ed. H.-J. Rehm & G. Reed. Verlag, Weinheim, 1987, pp. 547–603.Google Scholar
  4. 4.
    Macrae, A. R., Enzyme-catalysed modification of oils and fats. Phil. Trans. R. Soc. Lond. Ser. B., 310(1985) 227–233.CrossRefGoogle Scholar
  5. 5.
    Soda, K. & Yonaha, K., Application of free enzymes in pharmaceutical and chemical industries. In Biotechnology, Vol 7a, ed. H.-J. Rehm & G. Reed. Verlag, Weinheim, 1987, pp. 605–652.Google Scholar
  6. 6.
    Kilara, A., Enzyme modified lipid food ingredients. Process Biochem., 20(1985) 35–45.Google Scholar
  7. 7.
    Carey, N. H., Harris, T. J. R., Lowe, P. A., Doe!, M. T. & Emtage, J. S., A process for the production of a polypeptide. U.K. Patent 2100737 (1983).Google Scholar
  8. 8.
    Beppu, T., Uozumi, T., Tsuchiya, M. & Sekine, S. Expression plasmids useful in B. subtilis.European Patent 154351 (1985).Google Scholar
  9. 9.
    Mellor, J., Dobson, M. J., Roberts, N. A., Tuite, M. F., Emtage, J. S., White, S., Lowe, P. A., Patel, T., Kingsman, A. J. & Kingsman, S. M., Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene, 24(1983) 1–14.Google Scholar
  10. 10.
    Aunstrup, K., Production, isolation and economics of extracellular enzymes. In Applied Biochemistry and Bioengineering, Vol. 2, eds. L. Wingard, E. Katchalaski-Katzir & L. Goldstein. Academic Press, New York, 1979, pp. 27–69.Google Scholar
  11. 11.
    Lambert, P. W. & Meers, J. L., The production of industrial enzymes. Phil Trans. R. Soc. Lond. Ser. B., 300(1983) 263–282.CrossRefGoogle Scholar
  12. 12.
    Frost, G. M., Commercial production of enzymes. In Developments in Food Proteins4, ed. B. J. F. Hudson. Elsevier Applied Science Publishers, London, 1986, pp. 57–134.Google Scholar
  13. 13.
    ter Haseborg, E., Enzymes in flour and baking applications especially waffle batters. Process Biochem., 16(1981) 16–19.Google Scholar
  14. 14.
    Delente, J. J, Process for the Preparation of Heat Resistant Neutral Protease Enzyme. U.S. Patent 3796635 (1974).Google Scholar
  15. 15.
    Berridge, N. J., Manufacture, purification and properties of rennin. In Pro duction and Applications of Enzyme Preparations in Food Manufacture, (SCI Monograph No 11). Society of Chemical Industry, London, 1961, pp. 64–70.Google Scholar
  16. 16.
    Sternberg, M., Microbial rennets. In Adv. Appl. Microbiol., Vol. 20, ed. D. Perlman, 1976, pp. 135–157.Google Scholar
  17. 17.
    Balls, A. K., U.S. Dept. Agriculture, Circular No. 631. Protein-Digesting Enzymes from Papaya and Pineapple, 1941.Google Scholar
  18. 18.
    Banks, G. T., Binns, F. & Cutcliffe, R. L., Recent developments in the production and industrial applications of amylolytic enzymes derived from filamentous fungi. In Progress in Industrial Microbiology, Vol. 6, ed. D. J. D. Hockenhull, Iliffe, London, 1967, pp. 95–139.Google Scholar
  19. 19.
    Madsen, G. B., Norman, B. E. & Slott, S., A new heat-stable bacterial amylase and its use in high temperature liquefaction. Staerke, 25(1973) 304–308.CrossRefGoogle Scholar
  20. 20.
    Saha, B. C. & Zeikus, J. G., Biotechnology of maltose syrup production. Process Biochem., 22(1987) 78–82.Google Scholar
  21. 21.
    Cadmus, M. C., Jayko, L. G., Hensley, D. E., Gasdorf, H. & Smiley, K. L., Enzymatic production of glucose syrup from grains and its use in fermentation. Cereal Chem., 43(1966) 658–668.Google Scholar
  22. 22.
    Fogarty, W. M., Microbial amylases. In Microbial Enzymes and Biotechnology, ed. W. M. Fogarty. Applied Science Publishers, London, 1983, pp. 1–92.Google Scholar
  23. 23.
    Orskov, I., Klebsiella. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, ed. N. R. Krieg & J. G. Hill. Williams &; Wilkins, Baltimore, 1984, p. 321.Google Scholar
  24. 24.
    Jensen, B. F., & Norman, B. E., Bacillus acido pullulyticuspullulanase. Application and regulatory aspects for the food industry. Process Biochem., 19(1984) 129–134.Google Scholar
  25. 25.
    Pilnik, W., Enzymes in the beverage industry, (fruit juices, nectar, wine, spirits and beer). In Util. Enzymes Technol. Aliment. Symp. Int., ed. P. Dupuy. Tech. Doc. Lavoisier, Paris, 1982, pp. 425–450.Google Scholar
  26. 26.
    Nijpels, H. H., Lactases and their applications. In Enzymes and Food Processing, ed. G. G. Birch, N. Blakeborough & K. J. Parrer. Applied Science Publishers, Barking, 1981, pp. 89–104.CrossRefGoogle Scholar
  27. 27.
    Gekas, V. & Lopez-Leiva, M., Hydrolysis of lactose-a literature review. Process Biochem., 20(1985) 2–12.Google Scholar
  28. 28.
    Lindley, M. G., Cellobiase, melibiase and other disaccharidases. In Developments in Food Carbohydrates, Vol. 3, ed. C. K. Lee & M. G. Lindley. Elsevier Applied Science Publishers, London, 1982, pp. 141–165.Google Scholar
  29. 29.
    James, A. E., Fare, G., Sagar, B. F., Lucas, F. & Mitchell, I. de G., Improvements in or Relating to Enzymes. U.K. Patent 1421127, (1976).Google Scholar
  30. 30.
    Huber, J., Mueller, H., Dickscheit, R., Haefner, B., Herfort, B. & Riedel, K., Process for the Production of Glucane Decomposing Enzymes. U.K. Patent 1222396 (1971).Google Scholar
  31. 31.
    Pal, N., Das, S. & Kundu, A. K., Influence of culture and nutritional conditions on the production of lipase by submerged culture of Aspergillus niger. J. Ferment. Technol., 56(1978) 593–596.Google Scholar
  32. 32.
    Iwai, M. & Tsujisaka, Y., Fungal lipase. In Lipases, ed. B. Borgstrom & H.L. Brockman. Elsevier, Amsterdam, 1984, pp. 443–469.Google Scholar
  33. 33.
    Laboureur, P. & Labrousse, M., Lipase de Rhizopus arrhizus.Obtention purification et proprietees de la lipase de Rhizopus arrhizusvar delemar. Bull. Soc. Chim. Biol., 48(1966) 747–770.Google Scholar
  34. 34.
    Bucke, C., Enzymes in fructose manufacture. In Enzymes and Food Processing, ed. G. G. Birch, N. Blakeborough & K. J. Parker. Applied Science Publishers, London, 1981, pp. 51–72.CrossRefGoogle Scholar
  35. 35.
    Oestergaard, J. & Knudsen, S. L., Use of Sweetzyme in industrial continuous isomerisation. Various process alternatives and product types. Staerke, 28(1976) 350–356.CrossRefGoogle Scholar
  36. 36.
    Underkofler, L. A., Properties and applications of the fungal enzyme glucose oxidase. Proc. Intern. Symposium Enzyme Chem. Tokyo and Kyoto, 1957, Vol. 2. (1958) pp. 486–490.Google Scholar
  37. 37.
    Hesseltine, H. W. & Wang, H. L., Fermented foods. Chemistry and Industry.(1979) 393–399.Google Scholar
  38. 38.
    Takamine, J. Process of Making Diastatic Enzyme. U.S. Patent 525823 (1894).Google Scholar
  39. 39.
    Chibata, I., Immobilised Enzymes, Research and Development.Wiley, New York, 1978.Google Scholar
  40. 40.
    Kennedy, J. F. & Cabral, J. M. S., Enzyme immobolisation. In Biotechnology, Vol. 7a. ed. H.-J. Rehm & G. Reed. Verlag, Weinheim, 1987, pp. 347–404.Google Scholar
  41. 41.
    Pitcher, W. H., Immobilised Enzymes in Food Processing.C.R.C. Press, Boca Raton, Florida, 1980.Google Scholar
  42. 42.
    Rugh, S., Nielsen, T. & Poulsen, P. B., Application possibilities of a novel immobilised glucoamylase. Staerke, 31(1979) 333–337.CrossRefGoogle Scholar
  43. 43.
    Bucke, C., Industrial glucose isomerase. In Topics in Enzyme and Fermentation Technology, Vol. 1, ed. A. Wiseman. Ellis Horwood, Chichester, 1977, pp. 147–171.Google Scholar
  44. 44.
    Larsson, M., Arasaratnam, V. & Mattiason, B., Integration of bioconversion and downstream processing: starch hydrolysis in an aqueous two-phase system. Biotechnol. Bioengng., 33(1989) 758–766.CrossRefGoogle Scholar
  45. 45.
    Andersson, E. & Hahn-Haegerdahl, B., Bioconversions in aqueous twophase systems. Enzyme microb. Technol., 12(1990) 242–254.CrossRefGoogle Scholar
  46. 46.
    Kirby, C., Delivery systems for enzymes.Chem. Britain, Sept. (1990) 847–850.Google Scholar
  47. 47.
    Macrae, A. R., Lipase-catalysed interesterification of oils and fats. J. Am. Chem. Soc., 60(1983) 291–294.CrossRefGoogle Scholar
  48. 48.
    Fletcher, P. D. I., Freedman, R. B., Robinson, B. H., Rees, G. D. & Schomaecker, R., Lipase-catalysed ester synthesis in oil-continuous microemulsions. Biochim. Biophys. Acta, 912(1987) 278–282.CrossRefGoogle Scholar
  49. 49.
    Gaathon, A., Gross, Z. & Rozhanski, M., Propyl gallate: enzymatic synthesis in a reverse micelle system. Enzyme Microb. Technol., 11(1989) 604–609.CrossRefGoogle Scholar
  50. 50.
    Fukui, S. & Tanaka, A., Enzymatic reactions in organic solvents. Endeavour, New Series, 9(1985) 10–17.CrossRefGoogle Scholar
  51. 51.
    Dordisk, J. S., Enzymatic catalysis in monophasic organic solvents. Enzyme Microb. Technol., 11(1989) 194–211.CrossRefGoogle Scholar
  52. 52.
    Visuri, K. & Klibanov, A. M., Enzymatic production of high fructose corn syrup (HFCS) containing 55% fructose in aqueous ethanol. Biotechnol. Bioengng., 30(1987) 917–920.CrossRefGoogle Scholar
  53. 53.
    Vulfson, E. N., Sarney, D. B. & Law, B. A., Enhancement of subtilisincatalysed interesterification in organic solvents by ultrasound irradiation. Enzyme Microb. Technol., 13(1991) 123–126.CrossRefGoogle Scholar
  54. 54.
    Anonymous, Regulatory Aspects of Food Enzymes, Third edition. The Association of Microbial Food Enzyme Producers, Brussels, 1988.Google Scholar
  55. 55.
    Wuthrich, B. & Ott, F., Berufsasthma durch proteasen in der Waschmittelindustrie. Schweiz. Med. Wochenschr., 99(1969) 1584–1586.Google Scholar
  56. 56.
    Flindt, M. L. H., Respiratory hazards from papain. The Lancet(8061) (1978) 430–432.CrossRefGoogle Scholar
  57. 57.
    Tang, P., Nielsen, G. C., Gibson, K., Aunstrup, K. & Schiff, H. E., Protease Product of reduced Allergenicity. U.K. Patent 2024830, (1979).Google Scholar
  58. 58.
    Anonymous, Report PB204118. Ad hoc Committee on Enzyme Detergents, US National Academy of Sciences, National Research Council, 1971.Google Scholar
  59. 59.
    Flindt, M. L. H., Health and safety aspects of working with enzymes. Process Biochem., 13(1978) 3–7.Google Scholar
  60. 60.
    Roland, J. F., Regulation of food enzymes. Enzyme Microb. Technol., 3(1981) 105–110.CrossRefGoogle Scholar
  61. 61..
    Anonymous, Code of Federal Regulations. 21CFR, Sect.110.1. Office of the Federal Register, National Archives and Records Service, General Services Administration. Washington, D.C., 1981.Google Scholar
  62. 62..
    Anonymous, Ministry of Agriculture Fisheries and Food. Food Additives and Contaminants Committee Review of Remaining Classes of Food Additives Used as Ingredients in Food. Report on the Review of Enzyme Preparations. HMSO London, 1982.Google Scholar
  63. 63.
    Noordliviet, P. F. & Toet, D. A., Safety in enzyme technology. In Biotechnology, Vol. 7a, ed. H.-J. Rehm & G. Reed. Verlag, Weinheim, 1987, pp. 711–741.Google Scholar
  64. 64.
    Grampp, E. G., Modification of certain foodstuffs by enzymes. Process Biochem., 17(1982) 3–6, 12.Google Scholar
  65. 65.
    Bergmeyer, H.-U., ed. Methods of Enzymatic Analysis, 3rd edition, 10 vols. Verlag Chemie, Weinheim, 1983.Google Scholar
  66. 66.
    Karube, I., Analytical applications of enzymes: enzyme sensors for clinical, process and environmental analysis. In Biotechnology, ed. H.-J. Rehm & G. Reed. Verlag, Weinheim, 1987, Vol. 7a, pp. 685–708.Google Scholar
  67. 67.
    Keilin, D. & Hartree, E. F., The use of glucose oxidase (notatin) for the determination of glucose in biological materials and for the study of glucoseproducing systems by manometric methods. Biochem. J., 42(1948) 230–238.Google Scholar
  68. 68.
    Teller, J. D., Direct quantitative colorimetric determination of serum or plasma glucose. Abstrs. 130th Meeting Am. Chem. Soc.(1956) 69C.Google Scholar
  69. 69.
    Trinder, P., Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann. Clin. Biochem., 6(1969) 24–27.Google Scholar
  70. 70.
    Werner, W., Rey, H.-G. & Wielinger, H., Uber die eigenschaften eines neuen chromogens fur die blutzuckerbestimmung nach der GOD/POD methode. Fresenius Z. Anal. Chem., 252(1970) 224–228.CrossRefGoogle Scholar
  71. 71.
    Updike, S. J. & Hicks, G. P., Reagentless substrate analysis with immobilised enzymes. Science, 158(1967) 270–272.CrossRefGoogle Scholar
  72. 72.
    Gore, H. G., An automated enzymic method for the determination of glycerol. Anal. Biochem., 75(1976) 604–610.CrossRefGoogle Scholar
  73. 73.
    Karkalas, J., An improved enzymic method for the determination of native and modified starch. J. Sci. Food Agric., 36(1985) 1019–1027.CrossRefGoogle Scholar
  74. 74.
    Rao, P. V. & Hahn, S. K., An automated enzyme assay for determining the cyanide content of cassava (Manihot esculentaCrantz) and cassava products. J. Sci. Food Agric., 35(1984) 426–436.CrossRefGoogle Scholar
  75. 75.
    Smith, C. A. & Dacombe, C., Rapid method of determining total glucosinolates in rapeseed by measurement of enzymatically released glucose. J. Sci. Food Agric., 38(1987) 141–150.CrossRefGoogle Scholar
  76. 76.
    Henry, K. Evaluation of a general method for measurement of (1–3), (1–4)-3-glucans. J. Sci. Food Agric., 44(1988) 75–87.CrossRefGoogle Scholar
  77. 77.
    Ayob, M. K., Rayab, A. A. Allen, J. C., Farag, R. S. & Smith, C. J., An improved rapid ELISA technique for detection of pork in meat products. J. Sci. Food Agric. 49(1989) 103–116.CrossRefGoogle Scholar
  78. 78.
    Yasumoto, K., Sudo, M. & Suzuki, T., Quantitation of soy protein by enzyme linked immunosorbent assay of its characteristic peptide. J. Sci. Food Agric., 50(1990) 377–389.CrossRefGoogle Scholar
  79. 79.
    Henry, R. J., Rapid a-amylase assays for assessment of presprouting damage in wheat. J. Sci Food Agric., 49(1989) 15–23.CrossRefGoogle Scholar
  80. 80.
    Grassin, C. & Dubourdieu, D., Quantitative determination of Botrytis laccase in musts and wines by the syringaldazine test. J. Sci. Food Agric., 48(1989) 369–376.CrossRefGoogle Scholar
  81. 81.
    Carlson, A., Hill C. G. & Olson, N. F., Kinetics of milk coagulation I. Kinetics of kappa casein hydrolysis in the presence of enzyme deactivation. Biotechnol. Bioengng., 29(1987) 582–589.CrossRefGoogle Scholar
  82. 82.
    Carlson, A., Hill C. G. & Olson, N. F., Kinetics of milk coagulation II. Kinetics of the secondary phase, micelle flocculation. Biotechnol. Bioengng., 29(1987b) 590–600.CrossRefGoogle Scholar
  83. 83.
    Carlson, A., Hill, C. G. & Olson, N. F., Kinetics of milk coagulation III. Mathematical modelling of the kinetics of curd formation following enzymatic hydrolysis of kappa casein — parameter estimation. Biotechnol. Bioengng., 29(1987) 601–611.CrossRefGoogle Scholar
  84. 84.
    Carlson, A., Hill, C. G. & Olson, N. F., Kinetics of milk coagulation IV. The kinetics of the gel-forming process. Biotechnol. Bioengng., 29(1987) 612–624.CrossRefGoogle Scholar
  85. 85.
    Shimwell, J. L. & Evans, E. E., Improvements in the Manufacture of Cheese and Other Substances Depending on the Clotting of Milk. U.K. Patent 565788 (1944).Google Scholar
  86. 86.
    Sardinas, J. L., New sources of rennet. Process Biochem., 4(1969) 13–16, 21.Google Scholar
  87. 87.
    Sardinas, J. L., Rennin enzyme of Endothia parasitica. App!. Microbiol., 16(1968) 248–255.Google Scholar
  88. 88.
    Arima, K., Iwasaki, S. & Tamura, G., Milk clotting enzyme from microorganisms. Part I. Screening test and identification of the potent fungus. Agric. Biol. Chem., 31(1967) 540–545.CrossRefGoogle Scholar
  89. 89.
    Iwasaki, S., Tamura, G. & Arima, K., Milk clotting enzyme from microorganisms. Part II. The enzyme production and the properties of the enzyme. Agric. Biol. Chem., 31(1967) 546–551.CrossRefGoogle Scholar
  90. 90.
    Aunstrup, K., Improvements in or Relating to a Milk-Coagulating Enzyme. U.K. Patent 1108287 (1968).Google Scholar
  91. 91.
    Charles, R. L., Gertzman, D. P. & Melachouris, N., Milk-clotting Enzyme Product and Process Therefor. U.S. Patent 3549390 (1970).Google Scholar
  92. 92.
    Feldman, L. I., Verfahren zur Herstellung von Mikrobiellen Labferment. German Patent Application No. 1767183.Google Scholar
  93. 93.
    Cornelius, D. A., Process for Decreasing the Thermal Stability of Microbial Rennet. U.K. Patent 2024828. (1980).Google Scholar
  94. 94.
    Branner-Jorgensen, S., Thermal Destabilisation of Microbial Rennet by Acylation Thereof. U.K. Patent 2038339 (1980).Google Scholar
  95. 95.
    Branner-Jorgensen, S., Schneider, P. & Eigtved, P., A Method of Modifying the Thermal Destabilisation of Microbial Rennet, Rennet so Modified and a Method of Cheese Making Using Rennet so Modified. U.K. Patent 2045773 (1980)Google Scholar
  96. 96.
    Cornelius, D. A. Process for Decreasing the Thermal Stability of Microbial Rennet. U.K. Patent 2058082 (1981).Google Scholar
  97. 97.
    Nishimori, K., Kawaguchi, Y., Hidoka, M., Uozumi, T. & Beppu, T., Expression of cloned calf prochymosin gene sequence in Escherichia coli. Gene, 9(1982) 337–344.Google Scholar
  98. 98.
    Carlson, A. Coagulation of milk with immobilised enzymes. Enzyme Microb. Technol., 6(1984) 46–47.CrossRefGoogle Scholar
  99. 99.
    Law, B. A., Flavour development in cheeses. In Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, ed. F. L. Davies & B. A. Law. Elsevier Applied Science Publishers, London, 1984, pp. 187–208.Google Scholar
  100. 100.
    Hayashi, K. & Law, B. A., Purification and characterisation of two aminopeptidases produced by Brevibacterium linens.J. Gen. Microbiol., 135(1989) 2027–2034.Google Scholar
  101. 101.
    Wasserfall, F. & Teuber, M., Action of egg-white lysozyme on Clostridium tyrobutylicum.Appl. Environmental Microbiol., 38(1979) 197–199.Google Scholar
  102. 102.
    Teuber, M., Lysozyme as a substitute for nitrate in cheese making. Milchwirtsch. Ber. Bundesanst. Wolfpassing Rotholz, 63(1980) 129–130.Google Scholar
  103. 103..
    Gregory, K. W. The application of yeast lactase to the production of ice cream. In Util. Enzymes Technol. Aliment. Symp. Int., ed. P. Dupuy. Tech. Doc. Lavoisier, Paris, 1982, pp. 249–252.Google Scholar
  104. 104.
    Gonzalez, R. R. & Monsan, P., Purification and characterisation of β-galactosidase from Aspergillus fonsacaeus. Enzyme Microb. Technol., 13(1991) 349–352.CrossRefGoogle Scholar
  105. 105.
    Dinelli, D., Fibre-entrapped enzymes. Process Biochem., 7(1972) 9–12.Google Scholar
  106. 106.
    Marconi, W., Bartoli, F., Morisi, F. & Marani, A., Improved whey treatment by immobilised lactase. Enzyme Engineering 5, Proc. Int. Conf., Henniker, New Hampshire, (1979).Plenum Press, 1980, pp. 269–278.Google Scholar
  107. 107.
    Dohan, L. A., Baret, J. L. Pain, S. & Delalande, P., Lactose hydrolysis by lactase, semi-industrial experience. In Enzyme Engineering 5, Proc. Int. Conf., Henniker, New Hampshire, 1979.Plenum Press, 1980, pp. 279–293.Google Scholar
  108. 108.
    Bakken, A. P., Hill, C. G. & Amundson, C. H., Hydrolysis of lactose in skim milk by immobilised β-galactosidase in a spiral flow reactor. Biotechnol Bioengng. 33(1989) 1249–1257.CrossRefGoogle Scholar
  109. 109.
    Prenosil, J. E., Stuker, E. & Boume, J. R., Formation of oligosaccharides during enzymatic lactose: part I. State of the art. Biotechnol. Bioengng., 30(1987) 1019–1025.CrossRefGoogle Scholar
  110. 110.
    Prenosil, J. E., Stuker, E. & Boume, J. R., Formation of oligosaccharides during enzymatic lactose hydrolysis and their importance in a whey hydrolysis process: part II. Experimental. Biotechnol. Bioengng., 30(1987) 1028–1031.Google Scholar
  111. 111.
    Abril, J. R. & Stull, J. W., Lactose hydrolysis in acid whey with subsequent glucose isomerisation. J. Sci. Food Agric., 48(1989) 511–514.CrossRefGoogle Scholar
  112. 112.
    Scott, D. & Hammer, F. E., Assay of catalase for industrial use. Enzymologia, 22(1960) 194–198.Google Scholar
  113. 113.
    Wieg, A. J., Technology of barley brewing. Process Biochem., 5(1970) 46–48.Google Scholar
  114. 114.
    Tomkins, A. L. & Aunstrup, K., Improvements in or relating to preparation of an enzyme product. U.K. Patent 1380451 (1975).Google Scholar
  115. 115.
    Villetatz, J.-C., Steiner, D. & Trogus, H., The use of a beta glucanase as an enzyme in wine clarification and filtration. Am. .1. Enol. Vitic., 35(1984) 253–256.Google Scholar
  116. 116.
    Brocklehurst, K., Baines, B. S. & Kierstan, M. J. P., (1981) Papain and other constituents of Carica papaya.In Topics in Enzyme and Fermentation Biotechnology, Vol. 5, ed. A. Wiseman. Wiley, New York, 1981, pp. 262–335.Google Scholar
  117. 117.
    Ohlemeyer, D. W., Use of glucose oxidase to stabilise beer. Food Technol., 11(1957) 503–507.Google Scholar
  118. 118.
    Hartmeier, W. & Willox, I. C., Immobilised glucose oxidase and its use for oxygen removal from beer. Techn. Q., Master Brew. Assoc. Am., 18(1981) 145–149.Google Scholar
  119. 119.
    McLeod, R. & Ough, C. S., Some recent studies with glucose oxidase in wine. Am. J. Enol. Vitic., 21(1970) 54–61.Google Scholar
  120. 120.
    Ough, C. S., Further investigations with glucose oxidase-catalase enzyme systems for use in wine. Am. J. Enol. Vitic., 26(1975) 30–36.Google Scholar
  121. 121.
    Scott, D., Applications of glucose oxidase. In Enzymes in Food Processing, ed. G. Reed, 2nd edition. Academic Press, New York, 1975, pp. 519–547.Google Scholar
  122. 122.
    Sankaran, K., Godbole, S. S. & D’Souza, S. F., Preparation of spray-dried sugar-free egg powder using glucose oxidase and catalase co-immobilised on cotton cloth. Enzyme Microb. Technol., 11(1989) 617–619.CrossRefGoogle Scholar
  123. 123.
    Osadchaya, I. F., The use of glucose oxidase and catalase in animal fat production. Mol. Biol. (Kiev), 6(1971) 115–116.Google Scholar
  124. 124.
    Dedek, M., Hanus, J. & Vedlich, M., Method for the Production of Longlife Butter. Czech. Patent 132372, (1968).Google Scholar
  125. 125.
    Goderis, H. L., Ampe, G., Feyten, M. P., Fouwe, B. L., Guffens, W. M., van Cauwenbergh, S. M. & Tobback, P.P., Lipase-catalysed ester exchange reactions in organic media with controlled humidity. Biotechnol. Bioengng., 30(1987) 258–266.CrossRefGoogle Scholar
  126. 126.
    Wisdom, R. A., Dunnill, P. & Lilly, M. D., Enzymic interesterification of fats: laboratory and pilot-scale studies with immobilised lipase from Rhizopus arrhizus. Biotechnol. Bioengng., 29,(1987) 1029–1085.Google Scholar
  127. 127.
    Tahoun, M. K. & Ali, H. A., Specificity and glyceride synthesis by mycelial lipases of Rhizopus delemar. Enzyme Microb. Technol., 8(1986) 429–432.CrossRefGoogle Scholar
  128. 128.
    Reynolds, J. H., An immobilised a-galactosidase continuous flow reactor. Biotechnol. Bioengng., 16(1974) 135–147.CrossRefGoogle Scholar
  129. 129.
    Korus, R. A. & Olson, A. C., The use of a-galactosidase and invertase in hollow fiber reactors. Biotechnol. Bioengng., 19(1977) 1–8.CrossRefGoogle Scholar
  130. 130.
    Smiley, K. L., Hensley, D. E. & Gasdorf, H. J., Alpha-galactosidase production and use in a hollow-fibre reactor. Appl. Environ. Microbiol., 31(1976) 615–617.Google Scholar
  131. 131.
    Porter, J. E., Ladisch, M. R. & Hermann, K. M., Ion-exchange and affinity chromatography in the scale-up of the purification of a-galactosidase from soybean seeds. Biotechnol. Bioengng., 37(1991) 356–363.CrossRefGoogle Scholar
  132. 132.
    Shivanna, B. D., Ramakrishna, M. & Ramados, C.S., Enzymic hydrolysis of raffinose and stachyose in soybean milk by a-galactosidase from germinating guar (Cyamopsis tetragonolobus). Process Biochem., 24(1989) 197–199.Google Scholar
  133. 133.
    Charley, V. L. S., Use of enzymes in the processing and storage of juices and other fruit products. In Production and Applications of Enzyme Preparations in Food Manufacture.(SCI Monograph No 11). Society of Chemical Industry, London, 1961, pp. 107–120.Google Scholar
  134. 134.
    Whitaker, J. R., Pectic substances pectin formation and haze formation in fruit juices. Enzyme Microb. Technol., 6(1984) 341–349.CrossRefGoogle Scholar
  135. 135.
    Lozano, P., Manjon, A., Romojano, F. & Iborra, J. L., Properties of pectolytic enzymes covalently bound to nylon for apricot juice clarification. Process Biochem., 23(1988) 75–78.Google Scholar
  136. 136.
    Dransfield, E. & Etherington, D., Enzymes in the tenderisation of meat. In Enzymes and Food Processing, ed. G. G. Birch, N. Blakeborough & K. J. Parker. Applied Science Publishers, London, 1981, pp. 177–194.CrossRefGoogle Scholar
  137. 137.
    Delente, J., Johnson, J. H., Kuo, M. J., O’Connor, R. J. & Weeks, L. E., Production of a new thermostable neutral a-galactosidase from a strain of Bacillus stearothermophilus. Biotechnol. Bioengng., 16(1974) 1227–1243.CrossRefGoogle Scholar
  138. 138.
    Caygill, J. C., Sulphydryl plant proteases. Enzyme Microb. Technol., 1(1979) 233–242.CrossRefGoogle Scholar
  139. 139.
    Petersen, B. R., Recovery and use of proteins. In Enzymes and Food Processing, ed. G. G. Birch, N. Blakeborough & K. J. Parker. Applied Science Publishers, Barking, 1981, pp. 149–175.CrossRefGoogle Scholar
  140. 140.
    O’Meara, G. M. & Munro, P. A., Selection of a proteolytic enzyme to solubilise lean beef tissue. Enzyme Microb. Technol., 6(1984) 181–185.CrossRefGoogle Scholar
  141. 141.
    Legoy, M. D., Kim, H. S. & Thomas, D., Use of alcohol dehydrogenase for flavour alcohol production. Process Biochem., 20(1985) 145–148.Google Scholar
  142. 142.
    Vulfson, E. N., Pickersgill, R. W. & Law, B. A., Lipases and phospholipases: media optimisation and protein engineering. Proc. Int. Conf. Ind. Appl. Enzymes, Pisa, 1990.Google Scholar
  143. 143.
    Evans, C. T., Choma, C., Peterson, W. & Misawa, M., Bioconversion of trans-cinnamic acid to L-phenylalanine in an immobilised whole cell reactor. Biotechnol. Bioengng., 30(1987) 1067–1072.CrossRefGoogle Scholar
  144. 144.
    Ziehr, H., Kula, M.-R., Schmidt, E., Wandrey, C. & Klein, J., Continuous productionof L-phenylalanine by transamination. Biotech. Bioengng., 29(1987) 482–487.CrossRefGoogle Scholar
  145. 145.
    Chibata, I., Tosa, T. & Sato, T., Applications of immobilised biocatalysts in pharmaceutical and chemical industries. In Biotechnology, Vol. 7a, eds. H.J. Rehm & G. Reed, Verlag, Weinheim, 1987, pp. 653–684.Google Scholar
  146. 146.
    Fayolle, F., Marchal, R., Monot, F., Blanchet, D. & Ballerini, D., An example of production of natural esters: synthesis of butyl butyrate from wheat flour. Enzyme Microb. Technol., 3(1991) 215–219.CrossRefGoogle Scholar
  147. 147.
    Mazur, R. H., Schlatter, J. M. & Goldkamp, A. H., Structure-taste relationships of some dipeptides. J. Am. Chem. Soc., 91(1969) 2684–2691.CrossRefGoogle Scholar
  148. 148.
    Vojtisek, V., Guttman, T., Barta, M. & Netrval, J., Preparation of L-aspartic acid by means of immobilised Alcaligenes metalcilagenescells. Biotechnol. Bioengng., 28(1986) 1072–1079.CrossRefGoogle Scholar
  149. 149.
    Kilara, A., Enzyme modified protein food ingredients. Process Biochem., 20(1985) 149–157.Google Scholar
  150. 150.
    Bulpin, P. V., Gidley, M. J., Jeffcoat, R. & Underwood, D. R., Development of a biotechnological process for the modification of galactomannan polymers with plant a-galactosidase. Carbohydr. Polymers, 12(1990) 155–168.CrossRefGoogle Scholar
  151. 151.
    Wood, T. M. & McCrae, S. I., Synergism between the enzymes involved in the solubilisation of native cellulose. In Adv. Chem. Ser. 181, 1978. Hydrolysis of Cellulose. Mechanisms of Enzymatic and Acid Catalysis.American Chem. Soc., Washington D.C., 1979, pp. 189–209.Google Scholar
  152. 152.
    Ryu, D. D. Y. & Mandels, M., Cellulases: Biosynthesis and applications. Enzyme Microb. Technol., 2(1980) 91–102.CrossRefGoogle Scholar
  153. 153.
    Allen, A. A., Enzymic hydrolysis of cellulose to fermentable sugars. In Liquid Fuel Developments, ed. D. L. Wise. CRC Press, Boca Raton, Florida, 1983, pp. 49–64.Google Scholar
  154. 154.
    Knapp, J. S., Parton, J. H. & Walton, N. I., Enzymic saccharification of wheat straw derived from different cultures of winter wheat. J. Sci. Food Agric., 34(1983) 433–439.CrossRefGoogle Scholar
  155. 155.
    Hoffman, R. M. & Wood, T. M., Isolation and partial characterisation of a mutant of Pencillium funiculosumfor the saccharification of straw. Biotechnol. Bioengng., 27(1985) 81–85.CrossRefGoogle Scholar
  156. 156.
    Khan, A. W., Lamb, K. A. & Schneider, H., Recovery of fermentable sugars from the brewers’ spent grains by the use of fungal enzymes. Process Biochem., 23(1988) 172–175.Google Scholar
  157. 157.
    Matthew, J. A., Howson, S. J., Keenan, M. H. J. & Belton, P. S., Improvement of gelation properties of sugarbeet pectin following treatment with an enzyme preparation derived from Aspergillus niger.Comparison with a chemical modification. Carbohydr. Polymers, 12,(1990) 295–306.CrossRefGoogle Scholar
  158. 158.
    Norman, B. E., New developments in starch syrup technology. In Enzymes and Food processing, ed. G. G. Birch, N. Blakeborough & K. J. Parker. Applied Science Publishers, Barking, 1981, pp. 15–50.CrossRefGoogle Scholar
  159. 159.
    Harada, T., Yokobayashi, K. & Misaki, A., Formation of isoamylase by Pseudomonas. App!. Microbiol., 16(1968) 1439–1444.Google Scholar
  160. 160.
    Takasaki, Y., Studies on amylases from Bacillus effective for production of maltose. Part I. Production and utilisation of β-amylase and pullulanase from Bacillus cereusvar. mycoides. Agric. Biol. Chem., 40(1976) 1515–1522.CrossRefGoogle Scholar
  161. 161.
    Takasaki, Y., Studies on amylases from Bacillus effective for production of maltose. Part II. Purification and enzymic properties of β-amylase and pullulanase from Bacillus cereusvar. Mycoides. Agric. Biol. Chem., 40(1976) 1523–1530.CrossRefGoogle Scholar
  162. 162.
    Manners, D. J., Specificity of debranching enzymes. Nature, 234,(1971) 150–151.CrossRefGoogle Scholar
  163. 163.
    Bender, H. & Wallenfels, K., Untersuchungen an pullulan II. Spezifische abbau ein bacterielles enzym. Biochem. Z., 334(1961) 79–95.Google Scholar
  164. 164.
    Nielsen, G. C., Diers, I. V., Outtrup, H. & Norman, B. E., Debranching Enzyme Product. Preparation and Use Thereof. U.K. Patent 2097405. (1982).Google Scholar
  165. 165.
    Norman, B. E., A novel Bacillus pullulanase, its properties and application in the glucose syrups industry. J. Jpn. Soc. Starch Sci., 30(1983) 200–211.CrossRefGoogle Scholar
  166. 166.
    Suzuki, Y., Hatagaki, K. & Oda, H., A hyperthermostable pullulanase produced by an extreme thermophile, Bacillus flavocaldariusKP1228, and the evidence for the proline theory of increasing enzyme thermostability. Appl. Microbiol. Biotechnol., 34(1991) 707–714.CrossRefGoogle Scholar
  167. 167.
    Yoshimura, S., Danno, G. & Natake, M., Studies on D-glucose isomerising activity of D-xylose grown cells from Bacillus coagulansstrain HN68. Part I. Description of the strain and conditions for formation of the activity. Agric. Biol. Chem., 30(1966) 1015–1023.CrossRefGoogle Scholar
  168. 168.
    Zittan, L., Poulsen, P. B. & Hemmingsen, St. H., Sweetzyme-a new immobilised glucose isomerase. Staerke, 27 236–241.Google Scholar
  169. 169..
    Anheuser-Busch Inc., Method of Making Glucose Isomerase and Using Same to Convert Glucose to Fructose. UK Patent 1399408.Google Scholar
  170. 170.
    Takasaki, Y., Kosugi, Y. & Kanbayashi, A., Streptomyces glucose isomerase. In Fermentation Advances, ed. D. Perlman. Academic Press, London, 1969, pp. 561–589.Google Scholar
  171. 171.
    Iizuka, H., Ayukawa, Y., Suekane, S. & Kanno, M., Production of Extracellular Glucose Isomerase by Streptomyces. U.S. Patent 3622463 (1971).Google Scholar
  172. 172.
    Dworschack, R. G., Chen, J. C., Larnon, W. R. & Davies, L. G., Process for Producing Glucose Isomerase, U.K. Patent 1284218, (1972).Google Scholar
  173. 173.
    Bok, S. H., Jackson, L. G., Schroedel, C. J. & Seidman, M., Carbohydrases from Thermophilic Streptomyces. Canad. Patent 1131143 (1982).Google Scholar
  174. 174.
    Hafner, E. W., Constitutive Mutant of a Thermostable Glucose Isomerase. U.S. Patent 4551430 (1985).Google Scholar
  175. 175.
    Lechmacher, A. & Bisswanger, H., Isolation and characterisation of an extremely thermostable D-xylose isomerase from Thermus aquaticusHB8. J. Gen. Microbiol., 136(1990) 679–686.CrossRefGoogle Scholar
  176. 176.
    Henrick, K., Collyer, C. A. & Blow, D. M., Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2•5A and 2•3A resolution respectively J. Mol. Biol., 208(1989) 129–157.CrossRefGoogle Scholar
  177. 177.
    Collyer, C. A., Henrick, K. & Blow, D. M., The mechanism for aldose ketose interconversion of D-xylose isomerase involving ring opening followed by a [1,2] hydride shift. J. Mol. Biol., 212(1990) 211–235.CrossRefGoogle Scholar
  178. 178.
    Collyer, C. A. & Blow, D. M., Observations of reaction intermediates and the mechanism of aldose ketose interconversion by D-xylose isomerase. Proc. Natl. Acad. Sci., 87(1990) 1362–1366.CrossRefGoogle Scholar
  179. 179.
    Horikoshi, K., Production and industrial applications of β-cyclodextrin. Process Biochem., 14(1979) 26–28, 30.Google Scholar
  180. 180.
    Yagi, Y., Kuono, K. & Inui, T., Process for Purifying Cyclodextrins. U.S. Patent 4317881, (1982).Google Scholar
  181. 181.
    Bender, H., An improved method for the preparation of cyclooctaamylose, using starches and the cyclodextrin glycosyltransferase of Klebsiella pneumoniaeM5 al. Carbohydr. Res., 124(1983) 225–233.CrossRefGoogle Scholar
  182. 182.
    Dale, J. K. & Langlois, D. P., Syrup and Method of Making Same. U.S. Patent 2201609 (1940).Google Scholar
  183. 183.
    Aunstrup, K., Preparation of Amyloglucosidase. U.K. Patent 1092775 (1967).Google Scholar
  184. 184.
    Biester, A., Wood, M. W. & Wahlin, C. S., Carbohydrate studies I, the relative sweetness of pure sugar. Am. J. Physiol., 73(1925) 387–400.Google Scholar
  185. 185.
    Aschengreen, N. H., Helwieg-Nielsen, B., Rosendal, P. & Oestergaard, J. Liquefaction, saccharification and isomerisation of starches from sources other than maize. Staerke, 31(1979) 64–66.CrossRefGoogle Scholar
  186. 186.
    Matzuzawa, M., Kawano, M., Nakamura, N. & Horikoshi, K., An improved method for the preparation of Schardinger 3-dextrin on an industrial scale by cyclodextrin glycosyl transferase of an alkalophilic Bacillussp. (ATCC21783) Staerke, 27(1975) 410–413.CrossRefGoogle Scholar
  187. 187.
    Kato, T. & Horikoshi, K., Immobilised cyclodextrin glucanotransferase of an alkalophilic Bacillussp. no 38.2. Biotechnol. Bioengng., 26(1984) 595–598.CrossRefGoogle Scholar
  188. 188.
    Bender, H., Cyclodextrin glucantransferase von Klebsiella pneumoniae.Synthese, reinigung und eigenschaften des enzymes von K. pneumoniaeMS al. Arch. Microbiol., 111(1977) 271–282.CrossRefGoogle Scholar
  189. 189.
    Svensson, B., Pedersen, T. G., Svendsen, I., Sakai, T. & Ottesen, M., Characterisation of two forms of glucoamylase from Aspergillus niger, Carlsberg Res. Commun., 47(1982) 55–69.CrossRefGoogle Scholar
  190. 190.
    Svensson, B., Larsen, K., Svendsen, I. & Boel, E., The complete aminoacid sequence of the glycoprotein glucoamylase G1 from Aspergillus niger. Carlsberg Res. Commun., 48(1983) 529–544.CrossRefGoogle Scholar
  191. 191.
    Boel, E., Hjort, I., Svensson, B., Norris, F., Norris, K. E. & Fiil, N. P., Glucoamylases G1 and G2 from Aspergillus niger aresynthesised from two different but closely related mRNAs. EMBO J., 3(1984) 1097–1102.Google Scholar
  192. 192.
    Boel, E., Hansen, M. T., Hjort, I., Hoegh, I. & Fiil, N. P., Two different types of intervening sequences in the glucoamylases gene from Aspergillus niger. EMBO J., 3(1984) 1581–1585.Google Scholar
  193. 193.
    Nunberg, J. H., Meade, J. H., Cole, G., Lawyer, F. C., McCabe, P., Schweickart, V., Tal, R., Wittman, V. P., Flatgaard, J. E. & Innis, M. A., Molecular cloning and characterisation of the glucoamylase gene of Aspergillus awamori. Mol. cell. Biol., 4(1984) 2306–2315.Google Scholar
  194. 194.
    Fairbairn, D. A., Priest, F. G. & Stark, J. R., Extracellular amylase synthesis by Streptomyces limosus. Enzyme Microb. Technol., (1986) 89–92.Google Scholar
  195. 195.
    Fujii, M., Homma, T. & Taniguchi, M., Synergism of a-amylase and glucoamylase on hydrolysis of native starch granules. Biotechnol. Bioengng., 32(1988) 910–915.CrossRefGoogle Scholar
  196. 196.
    Robyt, J. & French, D., Purification and action pattern of an amylase from Bacillus polymyxa. Arch. Biochem. Biophys., 104(1964) 338–345.CrossRefGoogle Scholar
  197. 197.
    Fogarty, W. M. & Griffin, P. J. Purification and properties of a β-amylase produced by Bacillus polymyxa. J. Appl. Chem. Biotechnol., 25,(1975) 229–238.CrossRefGoogle Scholar
  198. 198.
    Outtrup, H. & Norman, B. E., Properties and application of a thermostable maltogenic amylase produced by a strain of Bacillus modified by recombinant DNA techniques. Staerke, 36(1984) 405–411.CrossRefGoogle Scholar
  199. 199.
    Saha, B. C. & Zeikus, J. G., Improved method of preparing high maltose conversion syrup. Biotechnol. Bioengng., 34(1989) 299–403.CrossRefGoogle Scholar
  200. 200.
    Kennedy, J. F., Cabral, J. M. S. & Kalogerakis, B., Comparison of action patterns of gelatin-entrapped and surface-bound glucoamylase on an aamylase degraded starch substrate: a critical examination of reversion products. Enzyme Microb. Technol., 7(1985) 22–28.CrossRefGoogle Scholar
  201. 201.
    Darnoko, D., Cheryan, M. & Artz, W. E., Saccharification of cassava starch in an ultrafiltration reactor. Enzyme Microb. Technol., 11(1989) 154–159.CrossRefGoogle Scholar
  202. 202.
    Yamane, T., The decomposition of raffinose by a-galactosidase. Sucr. Belg., 90(1971) 345–348.Google Scholar
  203. 203.
    Kobayashi, H. & Suzuki, H., Studies on the decomposition of raffinose by a-galactosidase of mold. II Formation of the mold pellet and its enzyme activity. J. Ferment. Technol., 50(1972) 625–632.Google Scholar
  204. 204.
    Tilbury, R. H., Improvements in the production of sucrose. U.K. Patent 1290694 (1972).Google Scholar
  205. 205.
    Park, Y. K., Martens, I. S. H. & Sato, H. H., Enzymatic removal of starch from sugarcane juice during sugarcane processing. Process Biochem., 20(1985) 57–59.Google Scholar
  206. 206.
    Woodward, J. & Wiseman, A., Invertase. In Developments in Food Carbohydrates, 3, ed. C. K. Lee & M. G. Lindley. Elsevier Applied Science Publishers, London, 1982, pp. 1–21.Google Scholar
  207. 207.
    Norman, B. E., A novel debranching enzyme for application in the glucose syrup industry. Staerke, 34(1982) 340–346.CrossRefGoogle Scholar
  208. 208.
    Barton, R. R., Rennert, S.S. & Underkofler, L. A., Glucose oxidase in the protection of foods and beverages. Food Technol., 11(1957) 683–686.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • G. M. Frost
    • 1
  1. 1.Selby, North YorkshireUK

Personalised recommendations