Central Limit Problem

  • M. Loève
Part of the Graduate Texts in Mathematics book series (GTM, volume 45)


The Central Limit Problem of probability theory is the problem of convergence of laws of sequences of sums of r.v.’s.


Convergence Criterion Continuity Point Normal Convergence Continuity Theorem Poisson Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 12.
    Bawly, G. Über einige Verallgemeinerungen der Grenzwertsätze der Wahrscheinlichkeitsrechnung. Mat. Sbornik 43 (1936).Google Scholar
  2. 13.
    Berry, A. The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 49 (1941).Google Scholar
  3. 14.
    Doblin, W. Sur les sommes d’un grand nombre de variables aléatoires indépendants. Bull. Sc. Math. 63 (1939).Google Scholar
  4. 15.
    Doblin, W. Sur l’ensemble de puissances d’une loi de probabilité. Ann. Ec. Norm. Sup. (1947).Google Scholar
  5. 16.
    Esseen, G. Fourier Analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math. (1944).Google Scholar
  6. 17.
    Feller, W. Ueber den Zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung. Math. Zeit. 40 (1935), 42 (1937).Google Scholar
  7. 18.
    Feller, W. Ueber das Gesetz der grossen Zahlen. Acta Univ. Szeged 8 (1937).Google Scholar
  8. 19.
    Feller, W. On the Kolmogoroff-P. Levy formula for infinitely divisible distribution functions. Proc. Yougoslav Acad. Sc. 82 (1937).Google Scholar
  9. 20.
    de Finetti, B. Sulle funzioni a incremento aleatorio. Rend. Accad. Naz. Lincei 10 (1929).Google Scholar
  10. 21.
    Liapounov, A. Nouvelle forme du theorème sur la limite de la probabilité. Mem. Acad. St-Petersbourg 11 (1900), 12 (1901).Google Scholar
  11. 22.
    Lindeberg, J. W. Ueber das Exponentialgesetz in der Wahrscheinlichkeitsrechnung. Math. Zeit. 15 (1922).Google Scholar
  12. 23.
    Loève, M. Nouvelles classes de lois limites. C. R. Ac. Sc. (1941), Bull. Soc. Math. (1945).Google Scholar
  13. 24.
    Loève, M. Ranking limit problem. Second Berkeley Symp. (1956).Google Scholar
  14. 25.
    Loève, M. A l’intérieur du problème limite central. Ann. Inst. Stat. Paris (1958).Google Scholar
  15. 26.
    Raikov, D. A. On the decomposition of Gauss and Poisson laws—in Russian. Izv. Akad. Nauk USSR 2 (1938).Google Scholar

Copyright information

© Springer-Verlag Inc. 1977

Authors and Affiliations

  • M. Loève
    • 1
  1. 1.Departments of Mathematics and StatisticsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations