Sums of Independent Random Variables

  • M. Loève
Part of the Graduate Texts in Mathematics book series (GTM, volume 45)


Two properties play a basic role in the study of independent r.v.’s: the Borel zero-one law and the multiplication theorem for expectations. Two general a.s. limit problems for sums of independent r.v.’s have been investigated: the a.s. convergence problem and the a.s. stability problem. Both of them took their present form in the second quarter of this century.


Independent Random Variable Random Function Finite Intersection Independent Classis Exponential Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birnbaum, Z. and Zuckerman, H. An inequality due to Hornich. Ann. Math. Stat. 15 (1944).Google Scholar
  2. 2.
    Borel, E. Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27 (1909).Google Scholar
  3. 3.
    Brunk, H. D. The strong law of large numbers. Duke Math. J. 15 (1948).Google Scholar
  4. 4.
    Cantelli, F. P. Su due applicazioni di un teorema di G. Boole. Rend. Accad. Naz. Lincei 26 (1917).Google Scholar
  5. 5.
    Chung, K. L. The strong law of large numbers. Proc. Second Berkeley Symp. on Stat, and Prob. (1951).Google Scholar
  6. 6.
    Daly, J. On the use of the sample range in an analogue of Student’s test. Ann. Math. Stat. 17 (1946).Google Scholar
  7. 7.
    Feller, W. The general form of the so-called law of the iterated logarithm. Trans. Am. Math. Soc. 54 (1943).Google Scholar
  8. 8.
    Kolmogorov, A. Ueber die Summen durch den Zufall bestimmter unabhängiger Grössen. Math. Ann. 99 (1928), 102 (1929).Google Scholar
  9. 9.
    Prokhorov, U. V. On the strong law of large numbers—in Russian. Dokl. Akad. Nauk USSR 69 (1949).Google Scholar
  10. 10.
    Robbins, H. On the equidistribution of sums of independent random variables. Proc. Am. Math. Soc. 4 (1953).Google Scholar
  11. 11.
    Tukey, J. An inequality for deviations from medians. Ann. Math. Stat. 16 (1945).Google Scholar

Copyright information

© Springer-Verlag Inc. 1977

Authors and Affiliations

  • M. Loève
    • 1
  1. 1.Departments of Mathematics and StatisticsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations