Distribution Functions and Characteristic Functions

  • M. Loève
Part of the Graduate Texts in Mathematics book series (GTM, volume 45)


In pr. theory, a distribution junction (d.f.), to be denoted by F, with or without affixes, is a nondecreasing function, continuous from the left and bounded by 0 and 1 on R.


Characteristic Function Weak Convergence Inversion Formula Additive Constant Discontinuity Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.
    Alexandrov, A. D. Additive set functions in abstract spaces. Matern. Sbornik 8, 9, 13 (1940, 1941, 1943).Google Scholar
  2. 7.
    Billingsley, P. Weak convergence of measures: applications in probability. Soc. Indust. and Appl. Math. (1971).Google Scholar
  3. 8.
    Bochner, S. Monotone Funktionen, Stieltjes Integrale, und harmonische Analyse. Math. Ann. 108 (1933).Google Scholar
  4. 9.
    Bray, H. E. Elementary properties of the Stieltjes Integral. Ann. Math. 20 (1919).Google Scholar
  5. 10.
    Dugué, D. Analyticité et convexité des fonctions caractéristiques. Ann. Inst. H. Poincaré XXII (1952).Google Scholar
  6. 11.
    Fortet, R. Calcul des moments d’une fonction de repartition à partir de sa characteristic. Bull. Sc. Math. 88 (1944).Google Scholar
  7. 12.
    Fréchet, M. and Shohat, J. A proof of the generalized second limit theorem in the theory of probability. Trans. Am. Math. Soc. 33 (1931).Google Scholar
  8. 13.
    Helly, E. Ueber lineare Funktionaloperationen. Sitz. Nat. Kais. Akad. Wiss. 121 (1949).Google Scholar
  9. 14.
    Kawata, T. and Udagawa, M. On infinite convolutions. Kadai Math. Sem. 3 (1949).Google Scholar
  10. 15.
    Le Cam. Convergence in distribution of stochastic processes. Univ. Cal. Publ. Stat. 2, no 4 (1957).Google Scholar
  11. 16.
    Marcienkiewicz. Sur les fonctions indépendantes. Fund. Math. 31 (1939).Google Scholar
  12. 17.
    Marcienkiewicz. Sur une propriété de la loi de Gauss. Math. Zeit. 44 (1939).Google Scholar
  13. 18.
    Parzen, E. On uniform convergence of families of sequences of random variables. Univ. Calif. Publ. Stat. 2 (1954).Google Scholar
  14. 19.
    Polya, G. Remark on characteristic functions. Proc. First Berkeley Symp. on Stat, and Prob. (1949).Google Scholar
  15. 20.
    Prohorov, U. V. Convergence of random processes and limit theorems of probability theory in Russia. Teoria Veroyatnostey, 1 (1956).Google Scholar
  16. 21.
    Zygmund, A. A remark on characteristic functions. Ann. Math. Stat. 18 (1947).Google Scholar

Copyright information

© Springer-Verlag Inc. 1977

Authors and Affiliations

  • M. Loève
    • 1
  1. 1.Departments of Mathematics and StatisticsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations