Elementary Probability Theory

  • M. Loève
Part of the Graduate Texts in Mathematics book series (GTM, volume 45)


Probability theory is concerned with the mathematical analysis of the intuitive notion of “chance” or “randomness,” which, like all notions, is born of experience. The quantitative idea of randomness first took form at the gaming tables, and probability theory began, with Pascal and Fermat (1654), as a theory of games of chance. Since then, the notion of chance has found its way into almost all branches of knowledge. In particular, the discovery that physical “observables,” even those which describe the behavior of elementary particles, were to be considered as subject to laws of chance made an investigation of the notion of chance basic to the whole problem of rational interpretation of nature.


Transition Matrix Repeated Trial Null State Elementary Probability Covering Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I.
    Bernoulli, J. Ars conjectandi (1713).Google Scholar
  2. II.
    Bernstein, S. Theory of probabilities—in Russian (1946).Google Scholar
  3. III.
    Borel, E. Principes et formules classiques (1925).MATHGoogle Scholar
  4. IV.
    Chung, K. L. Notes on Markov chains—mimeographed, Columbia University (1951).Google Scholar
  5. V.
    Delteil, R. Probabilités géometriques (1926).Google Scholar
  6. VI.
    Feller, W. An Introduction to probability theory and its applications (1950).MATHGoogle Scholar
  7. VII.
    Fréchet, M. Méthode des jonctions arbitraires. Théorie des événements en chaine dans le cas d’un nombre fini d’états possibles (1938).Google Scholar
  8. VIII.
    Fréchet, M. Les probabilités associees à un systeme d’événements compatibles et dependants I (1940), II (1943).Google Scholar
  9. IX.
    Gnedenko, B. Course in theory of probabilities—in Russian (1950).Google Scholar
  10. X.
    Laplace. Traité des probabilités (1801).Google Scholar
  11. XI.
    Loève, M. Probability methods in physics—mimeographed, University of California (1948).Google Scholar
  12. XII.
    Markov. Wahrscheinlichkeitsrechnung—translated from Russian (1912).MATHGoogle Scholar
  13. XIII.
    Parzen, E., Modern probability theory and its applications (1960).MATHGoogle Scholar
  14. XIV.
    Perrin, F. Mécanique statistique quantique (1939).Google Scholar
  15. XV.
    Neyman, J. First course on probability and statistics (1950).Google Scholar
  16. XVI.
    Uspensky, J. Introduction to mathematical probability. Google Scholar
  17. 1.
    Kac, M. Random walk in the presence of absorbing barriers. Ann. Math. Stat. 16 (1945).Google Scholar
  18. 2.
    Kolmogorov, A. Markov chains with a countable number of possible states—in Russian. Bull. Math. Univ. Moscow 1 (1937).Google Scholar
  19. 3.
    Loève, M. Sur les systèmes d’événements. Ann. Univ. Lyon (1942).Google Scholar
  20. 4.
    Polvà, G. Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré 1 (1931).Google Scholar

Copyright information

© Springer-Verlag Inc. 1977

Authors and Affiliations

  • M. Loève
    • 1
  1. 1.Departments of Mathematics and StatisticsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations