‘Simple’ model systems need comparative studies: differences areas important as commonalities

  • Theodore Holmes Bullock


The study of selected species and preparations as simple models of nervous systems has brought us many insights into neural function but it has been limited in respect to one major class of questions: namely, those concerned with the phenomenon of evolutionary advancement in brain and behavior in higher animals. Given that some taxa, such as primates, are more advanced than others, such as elasmobranchs or hymenopterans, we have little understanding of how differences in behavior relate to differences in anatomy, physiology or biochemistry.


Neural Function Dorsal Cochlear Nucleus Advanced Species Hexactinellid Sponge Evolutionary Advancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected references

  1. 1.
    Usherwood, P. N. R. and Newth, D. R. (1975) Simple Nervous Systems. Edward ArnoldGoogle Scholar
  2. 2.
    Masterton, R. B., Campbell, C. B. G., Bitterman, M. E. and Hotton, N. (1976) Evolution of Brain and Behavior in Vertebrates. Lawrence Erlbaum AssociatesGoogle Scholar
  3. 3.
    Hoyle, G. (1977) Identified Neurons and Behavior of Arthropods, Plenum PressCrossRefGoogle Scholar
  4. 4.
    Fentress, J. C. (1976) Simpler Networks and Behavior, Sinauer AssociatesGoogle Scholar
  5. 5.
    Muller, K. J., Nicholls, J. G. and Stent, G. S. (1981) Neurobiology of the Leech,Cold Spring HarborGoogle Scholar
  6. 6.
    Atwood, H. L. and Sandeman, D. C. (1982) The Biology of Crustacea (Vol. 3: Neurobiology: Structure and Function). Academic PressGoogle Scholar
  7. 7.
    Sandeman, D. C. and Atwood, H. L. (1982) The Biology of Crustacea. (Vol. 4:.Neural Integration and Behavior),Academic PressGoogle Scholar
  8. 8.
    Shelton, G. A. B. S. (1982) Electrical Conduction and Behaviour in ‘Simple’ Invertebrates Oxford University PressGoogle Scholar
  9. 9.
    Huber, F. and Markl, H. (1983) Neuroethology and Behavioral Physiology Roots and Growing Points Springer-VerlagGoogle Scholar
  10. 10.
    Davis, R. E. and Northcutt, R. G. (1983) Fish Neurobiology (Vol. 2), University of Michigan PressGoogle Scholar
  11. 11.
    Northcutt, R. G. and Davis. R. E. (1983) Fish Neurobiology ( Vol. I ), University of Michigan PressGoogle Scholar
  12. 12.
    Demski, L. S. (1984) Am. Zool. 24, 689–833Google Scholar
  13. 13.
    Selverston. A. I. (1985) Model.Neural Networks and Behavior. Plenum PressGoogle Scholar
  14. 14.
    Northcutt, R. G. (1985) in Comparative Neurobiology (Cohen. M. J. and Strumwasser, F.. eds). pp. 351–378, John Wiley & SonsGoogle Scholar
  15. 15.
    Cohen. M. J. and Strumwasser, F. (1985) Comparative Neurobiology,John Wiley & SonsGoogle Scholar
  16. 16.
    W illlows, A. O. D. (1985) The.Molluscs (Vol. 8: Neurobiology and Behavior). Academic PressGoogle Scholar
  17. 17.
    Armstrong, E. and Falk. D. (1982) Primate Brain Evolution: Methods and Concepts. Plenum PressGoogle Scholar
  18. 18.
    Macphail, E. (1982) Brain and Intelligence in Vertebrates Oxford University PressGoogle Scholar
  19. 19.
    Bullock, T. H. (1980) in Information Processing in the Nervous System (Pinsker, H. M. and Willis, W. D., eds), pp. 199–2220. Raven PressGoogle Scholar
  20. 20.
    Prosser, C. L. (1986) Adaptational Biology John Wiley & SonsGoogle Scholar
  21. 21.
    Bullock, T. H. (1984) Science 225. 473–477CrossRefGoogle Scholar
  22. 22.
    Bullock, T. H. and Heiligenberg, W. (1986) Electroreception,John Wiley & SonsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Theodore Holmes Bullock
    • 1
  1. 1.Department of Neurosciences A-001School of Medicine, University of CaliforniaSan Diego. La JollaUSA

Personalised recommendations