Comparative Neuroscience Holds Promise for Quiet Revolutions

  • Theodore H. Bullock


The brain has diversified and advanced in evolution more than any other organ; the variety of nervous systems and behaviors among animal species is thus available for our exploitation. Comparative neuroscience is likely to reach insights so novel as to constitute revolutions in understanding the structure, functions, ontogeny, and evolution of nervous systems. This promise requires pursuit on a wide front, in respect to disciplines and in respect to the species, stages, and states compared. It also requires deliberate concentration on the differences among animals, in addition to the prevailing concern for the basic and common. Neglect of these challenges would be costly. Without due consideration of the neural and behavioral correlates of differences between higher taxa and between closely related families, species, sexes, and stages, we cannot expect to understand our nervous systems or ourselves.


Granule Cell Layer Optic Lobe Local Circuit Behavioral Correlate Dorsal Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    R. B. Livingston, Sensory Processing, Perception, and Behavior (Raven, New York. 1978 ); E. A. Shneour, The Malnourished Mind ( Anchor, New York. 1975 ).Google Scholar
  2. 2.
    T. H. Bullock, in Fish Neurobiology, and Behavior. R. E. Davis and R. G. Northcutt. Eds. ( Univ. of Michigan Press, Ann Arbor, 1983 ), vol. 2, p. 441.Google Scholar
  3. 3.
    T. H. Bullock, in Neurobiology of the Mauthner Cell, D. Faber and H. Korn, Eds. (Raven. New York, 1978), p. I: in Information Processing in the Nervous System, H. M. Pinsker and W. D. Willis Jr., Eds. (Raven, New York, 1980), p. 199. A set does not necessarily mean discontinuous distribution of defining properties; overlapping sensory fields in the skin may form a continuum between widely disparate receptive fields but. as in handicapping or grading, as soon as enough difference has accumulated to be judged appreciable. an arbitrary line can he drawn. The operative word is distinguishable-meaning significantly distinct by any criterion, in our judgment.Google Scholar
  4. 4.
    P. RakiC, Neurosci. Res. Program Bull. 13, 291 119751.Google Scholar
  5. 5.
    R. Lorente de Nó, in Physiology of the Nervous System, J. F. Fulton, Ed. ( Oxford Univ. Press, Oxford, 1938 ). p. 307.Google Scholar
  6. 6.
    T. H. Bullock, in Neural Integration at Basic and Cortical Levels, F. Reinoso-Suarez, Ed. (Raven, New York, in press); K. Tazaki and 1. M. Cooke. J. Comp. Phvslol. 151. 311 (1983).Google Scholar
  7. 7.
    A. Selverston, Brain Behay. Sci. 3. 535 (1980).CrossRefGoogle Scholar
  8. 8.
    P. S. Ulinski, Am. Zool., in press: W. Heiligenberg and J. Bastian, Anna. Rev. Physiol. 46, 561 (1984).Google Scholar
  9. 9.
    S. O. E. Ebbesson, Cell Tissue Res. 213, 179 (19801.Google Scholar
  10. 10.
    R. G. Northcutt. Am. Zool., in press.Google Scholar
  11. 11.
    F. Nottebohm. Nature (London), in press; S. A. Goldman and F. Nonebohm, Proc. Natl. Acad. Sci. U.S.A. 80. 2390 119831.Google Scholar
  12. 12.
    R. 1. Dooling and M. H. Searcy, Physiol. Psycho. 9. 293 (198I1.Google Scholar
  13. 13.
    N. Suga, H. Niwa, I. Taniguchi, in Advances in Vertebrate Neuroethologv, J.-P. Ewert. R. R. Capranica, D. J. Ingle, Eds. ( Plenum. New York, 1983 ), p. 829.Google Scholar
  14. 14.
    V. S. Kesarev, Arkh. Anat. Gistol. Embriol. 59, 71 (1970): T. H. Bullock and V. S. Gurevich, Im. Rev. Neurobiol. 21, 47 (1979); P. Morgane, J. Comp. Neurol., in press; in Dolphin Cognition and Behavior: A Comparative Approach,R. Buhr. R. Schusterman, J. A. Thomas. F G. Wood. Eds.)Erlbaum, Hillsdale. N.J., in press).Google Scholar
  15. 15.
    M. M. Merzenich. Anat. Rec. 1970, 347 (1979).L. Kitzes. L. Aitkin. Brain Res. 58. 331 (1973).Google Scholar
  16. 16.
    J. K. Moore. I. Comp. Neurol. 193, 609 119803Google Scholar
  17. 17.
    C. B. G. Campbell. Brain Behar. Erol. 6. 218 (1972).Google Scholar
  18. 18.
    M. Tigges,A.E. Hendrickson. J. Tigges, Soc.,Veurosci. Abstr. 9. 910 (1983).Google Scholar
  19. 19.
    S. L. Foote. F. E. Bloom. G. S. Aston-Jones. Physiol. Res. 63. 844 (1983).Google Scholar
  20. 20.
    N. C. Brecha, in Nearochemical Anatomy, P.C. Emson, Ed. (Raven. New York. in press). and H. J. Karten. in Molecular and Cellular Basis of Visual Activity, R. Hilfer and J. Sheffield, Eds. (Raven. New York. in press).Google Scholar
  21. 21.
    G. R. Penny. M. Conley. I. T. Diamond, D. E. Schmechel, in preparation.Google Scholar
  22. 22.
    T. H. Bullock, in Neuroethologv and Behavioral Physiology. F. Huber and H. Markl, Eds. ( Springer-Verlag, Heidelberg. 1983 ), p. 403.Google Scholar
  23. 23.
    E. Macphail. Brain and Intelligence in Vertebrates (Oxford Univ. Press. Oxford, 19821.Google Scholar
  24. 24.
    T. H. Bullock. in Dolphin Cognition und Bennoior: A Comparatoe Approach. R. Buhr. R. Schusterman. J. A. Thomas. F. G. Wood, Eds. (Erlbaum. Hilisdale. N.J., in press).Google Scholar
  25. 25.
    This article is based on the Third Annual Neuroscience Lecture. given in May 1983 at the Neu-rological Sciences Center, Good Samaritan Hos-pital and Medical Center, Portland, Oregon. The research ‘sas supported by grants from the National Science Foundation and the National Institute of Neurological and Communicative Disorders and Stroke.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Theodore H. Bullock

There are no affiliations available

Personalised recommendations