Advertisement

The Origins of Patterned Nervous Discharge

  • Theodore Holmes Bullock

Abstract

The output of single neurons and of groups of neurons is normally probably always patterned, i.e., temporally and spatially distributed in a meaningful, non-random way. One way of stating the function of the nervous system, or of any significant part if it, is that it formulates appropriately patterned messages in code. The question how this formulation takes place is surely one of the core questions of general neurology. Curiously, it has received little direct attention although a great body of related information is known.

Keywords

Electric Organ Phasic Input Intact Limb General Neurology Rhythmic Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E. D. (1931). Potential changes in the isolated nervous system of Dytiscws marginalis.–J. Physiol. 72, p. 132–151.Google Scholar
  2. Albe-Fessard, D., Szabo, T. (1954). Etude microphysiologique du neurone inter- médiare d’une chaîne reflexe disyriaptique.–C. R. Soc. Biol. 148, p. 281–283.Google Scholar
  3. Andersson, B. (1953). The effect of injections of hypertonie NaCl-solutions into different parts of the hypothalamus of goats.–Acta physiol. Scandinay. 28, p. 188–20I.Google Scholar
  4. Buddenbrock, W. Von (1952). Sinnesphysiologie. Vergleichende Physiologie, vol. 1. - Birkhauser, Basel.Google Scholar
  5. Bennett, M. V. L., Grundfest, H. (1959). Electrophysiology of electric organ in Gymnotus carapo.–J. gen. Physiol. 42, p. 1067–1104.CrossRefGoogle Scholar
  6. Bullock, T. H. (1956). The trigger concept in biology. In „Physiological Triggers and Discontinuous Rate Processes“, T. H. Bullock, ed. - Amer. Physiol. Soc., Washington.Google Scholar
  7. Bullock, T. H. (1958). Parameters of integrative action of the nervous system at the neuronal level. In “The Submicroscopic Organization and Function of Nerve Cells.” H. Fernandez-Moran and R. Brown, eds.–Exper. Cell Res. Suppl. 5, p. 323–337.Google Scholar
  8. Bullock, T. H. (1959). Initiation of nerve impulses in receptor and central neurons. - In “Biophysical Science”, Revs. Mod. Physics 31, p. 504–514. (also Wiley, New York).Google Scholar
  9. Bullock, T. H., Terzuolo, C. A. (1957). Diverse forms of activity in the somata of spon- taneous and integrating ganglion cells.–J. Physiol. 138, p. 341–364.Google Scholar
  10. Coates, C. W., Altamirano, M., Grundfest, H. (1954). Activity in electrogenic organs of knifefishes.–Science 120, p. 845–846.Google Scholar
  11. Eccles, R. M., Lundberg, A. (1958). Integrative pattern of la synaptic actions on motoneurones of hip and knee muscles.–J. Physiol. 144, p. 271–298.Google Scholar
  12. Gray, J. (1950). The role of peripheral sense organs during locomotion in the vertebrates.–Symp. Soc. Exp. Biol. 4, p. 112–126.Google Scholar
  13. Gray, J., Lissmann, H. W. (1940). The effect of de-afferentiation upon the locomotor activity of amphibian limbs.–J. exp. Biol. 17, p. 227–236.Google Scholar
  14. Gray, J (1940). Ambulatory reflexes in spinal amphibians,–J. exp. Biol. 17, p. 237–251.Google Scholar
  15. Gray, J., Lissmann, H. W. (1946). Further observations on the effect of de-afferentiation on the locomotory activity of amphibian limbs.–J. exp. Biol. 23, p. 121–132.Google Scholar
  16. Gray, J., Lissmann, H. W. (1946). The coordination of limb movements in the amphibia.–J. exp. Biol. 23, p. 133–142.Google Scholar
  17. Hagiwara, S., Watanabe, A. (1956). Discharges in motoneurons of cicada.–J. cell. comp. Physiol. 47, p. 415–428.CrossRefGoogle Scholar
  18. Hassenstein, B., Reichhardt, W. (1956). System-theoretische Analyse der Zeit-Reihenfolge und Vorzeiclienauswcrtung bei der Bewegungsperzeption des Rüsselkäfers Chlorophansis.–Z. Naturf. LIb, p. 513–524.Google Scholar
  19. Hor, T, E., Stptt., U. (1960). Von Wirkungsgefüge der Triehe.–Naturwissenst-haften 18, P. 409–422.Google Scholar
  20. Horridge, G. A. (1956). The responses of Heteroxcnia (Alcyonaria) to stimulation and to some inorganic ions.–J. exp. Biol. 33, P. 604–614.Google Scholar
  21. Horridge, G. A. (19J9). The nerves and muscles of medusae. VI. The rhythm.–J. exp. Biol. 36, p. 72–91.Google Scholar
  22. Hubel, D. H., Wiesel, T. N. (19J9). Receptive fields in the cat’s striate cortex.–J. Physiol. 148, P. 574–591.Google Scholar
  23. Huber, F. (1955). Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus carnpestris (L.).–Z. Tierpsychol. 12, p. 12–48.CrossRefGoogle Scholar
  24. Hughes, G. M. (1957). The coordination of insect movements. H. The effect of limb amputation and the cutting of commissures in the cockroach (Blatta orientalis).–J. exp. Biol. 34, P. 306–333.Google Scholar
  25. Hughes, G. M., Wiersma, C. A. G. (in press). The Coordination of the Swimmeret Movements in the Crayfish, Procmnbarres clarkii Girard. - Í. exp. Biol.Google Scholar
  26. Lettvin, J. Y., Maturana, H. R., Mcculi. H, W. S., Purts, W. H. (1059). What the frog’s eye tells the frog’s brain.–Proc. I.R.E. 47, p. 1940–1951.Google Scholar
  27. Lissmann, W. H. (1958). On the function and evolution of electric organs in fish.–J. exp. Biol. 35, p. 156–191.Google Scholar
  28. Maynard, D. M. (1955). Activity in a crustacean ganglion. II. Pattern and interaction in burst formation.–Biol. Bull. 109, p. 420–436.CrossRefGoogle Scholar
  29. Miller, P. L. (Ig6o). Respiration in the desert locust.–T. C.N.P. Biol. 37, p. 224–278.Google Scholar
  30. Mittelstaedt, H. (1957). Prey capture in mantids. - In “Recent Advances in Invertebrate Physiology.” Univ. of Oregon, Eugene.Google Scholar
  31. Oberholzer, J. H., Tofani, W. O. (1960). The neural control of respiration. In “Handbook of Physiology, Sect. 1, Neurophysiology”, vol. 2, p. 1111–1129.Google Scholar
  32. Salmoirhagi, G. C., Burns, B. D. (1958). Rhythmicity of breathing-a study with extracellular microelectrodes. - Fed. Proc. 17, p. 139.Google Scholar
  33. Strummwasser, F., Cade, T. (1957). Behavior elicited by brain stimulation in freely moving vertebrates.–Anat. Rec. 128, p. 630–631.Google Scholar
  34. Verplanck, W. (1957). A glossary of some terms used in the objective scien_e of behavior,–Psych. Rev. 64 (Suppl. no. 6, part 2), p. i-viii, 1–42.Google Scholar
  35. Weiss, P. (1950). Experimental analysis of coordination by the disarrangement of central-peripheral relations. - Symp. Soc. Exp. Biol. 4, p. 92-III.Google Scholar
  36. Wells, G. P. (1950). Spontaneous activity cycles in polychaete worms.–Symp. Soc. Exp. Biol. 4, p. 127–142.Google Scholar
  37. Wells, G. P. (1955). The sources of animal behaviour. - An inaugural lecture delivered at University College, London, 5 May 1955. H. K. Lewis, London.Google Scholar
  38. Wiersma, C. A. G. (1952). Neurons of arthropods.–Cold Spring Harbor Symp. Quant. Biol. 17, p. 155–164.CrossRefGoogle Scholar
  39. Wilson, D. M., Weis-Fogh, T. (1960). Personal communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Theodore Holmes Bullock
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations