The Auditory Brain Stem Response in Five Vertebrate Classes

  • Jeffrey T. Corwin
  • Theodore H. Bullock
  • Jeff Schweitzer


Auditory brain stem responses (ABRs) are short latency microvolt potentials evoked by acoustic stimuli and recordable by computer averaging with electrodes located centimeters from the active tissue. These responses were first recognized in cats by Jewett (1970) and soon reported from humans (Jewett et al. 1970). In the clinic ABRs have provided useful measures for hearing and for physiological evaluation of the brain stem’s integrity (Hecox and Galambos 1974; Starr and Achor 1975).


Slow Wave Sine Wave Acoustic Stimulus Tone Burst Leopard Frog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, A.R. and Starr, A. Auditory brainstem potentials in monkey (M. mulatta) and man. Electroenceph. clin. Neurophysiol., 1978, 45: 53–63.Google Scholar
  2. Bell, C. Some central connections of medullary octavolateral centers in a mormyrid fish. In: W.N. Tavolga, A.N. Popper and R.R. Fay (Eds.), Hearing and Sound Communication in Fishes. Springer, Berlin, 1981: 383–392.CrossRefGoogle Scholar
  3. Biederman-Thorson, M.A. Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. Brain Res., 1970a, 24: 235–245.CrossRefGoogle Scholar
  4. Biederman-Thorson, M.A. Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. Brain Res., 1970b, 24: 247–256.CrossRefGoogle Scholar
  5. Buchwald, J.S. and Huang, C.-M. Far-field acoustic response: origins in the cat. Science, 1975, 189: 382–384.CrossRefGoogle Scholar
  6. Bullock, T.H. Neuroethalogy deserves more study of evoked responses. Neuroscience, 1981, 6: 1203–1215.CrossRefGoogle Scholar
  7. Bullock, T.H. and Corwin, J.T. Acoustic evoked activity in the brain of sharks. J. comp. Physiol., 1979, 129: 223–234.CrossRefGoogle Scholar
  8. Capranica, R.R. Morphology and physiology of the auditory system. In: R. Llins and W. Precht (Eds.), Frog Neurobiology. Springer, Berlin, 1976: 551–575.CrossRefGoogle Scholar
  9. Corwin, J.T. Audition in elasmobranchs. In: W.N. Tavolga, A.N. Popper and R.R. Fay (Eds.), Hearing and Sound Communication in Fishes. Springer, Berlin, 1981: 81–105.CrossRefGoogle Scholar
  10. Corwin, J.T. and Northcutt, R.G. Auditory centers in the elasmobranch brain stem: deoxyglucose autoradiography and evoked potential recording. Brain Res., 1982, 236: 261–273.CrossRefGoogle Scholar
  11. Frishkopf, L.S. and Goldstein, Jr., M.H. Response to acoustic stimuli from single units in the eighth nerve of the bullfrog. J. acoust. Soc. Amer., 1963, 35: 1219–1228.Google Scholar
  12. Galambos, R., Makeig, S. and Talmachoff, P.J. A 40-Hz auditory potential recorded from the human scalp. Proc. nat. Acad. Sci. (Wash.), 1981, 78: 2643–2647.CrossRefGoogle Scholar
  13. Hartline, P.H. Physiological basis for detection of sound and vibration in snakes. J. exp. Biol., 1971a, 54: 349–371.Google Scholar
  14. Hartline, P.H. Midbrain responses of the auditory and somatic vibration systems in snakes. J. exp. Biol., 1971b, 54: 373–390.Google Scholar
  15. Hecox, K. and Galambos, R. Brainstem auditory evoked responses in human infants and adults. Arch. Otolaryng., 1974, 99: 30–33.CrossRefGoogle Scholar
  16. Jewett, D.L. Volume conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroenceph. clin. Neurophysiol., 1970, 28: 609–618.Google Scholar
  17. Jewett, D.L., Romano, M.N. and Williston, J.S. Human auditory evoked potentials: possible brainstem components detected in the scalp. Science, 1970, 167: 1517–1518.CrossRefGoogle Scholar
  18. Laming, P.R. and Murrow, G. The contribution of the swim-bladder to audition in the roach (Rutilas rutilas). Comp. Biochem. Physiol., 1981, 69A: 537–541.CrossRefGoogle Scholar
  19. Liff, H. Responses from single auditory units in the eighth nerve of the leopard frog. J. acoust. Soc. Amer., 1969, 45: 512–513.Google Scholar
  20. Maurer, K., Schafer, E. and Leitner, H. The effect of varying stimulus polarity (rarefaction vs. condensation) on early auditory evoked potentials (EAEPs). Electroenceph. clin. Neurophysiol., 1980, 50: 332–334.Google Scholar
  21. Mudry, K.M., Constantine-Paton, M. and Capranica, R.R. Auditory sensitivity of the diencephalon of the leopard frog Rana pipiens. J. comp. Physiol., 1977, 114: 1–13.CrossRefGoogle Scholar
  22. Northcutt, R.G. Central auditory pathways in anamniote vertebrates. In: A.N. Popper and R.R. Fay (Eds.), Comparative Studies of Hearing in Vertebrates. Springer, Berlin, 1978: 79–118.Google Scholar
  23. Patterson, W.C. Hearing in the turtle, J. audit. Res., 1966, 6: 453–464.Google Scholar
  24. Picton, T.W., Hillyard, S.A., Krause, H.I. and Galambos, R. Human auditory evoked potentials. 1. Evaluation of components. Electroenceph. clin. Neurophysiol., 1974, 36: 179–190.Google Scholar
  25. Ridgway, S.H., Bullock, T.H., Carder, D.A., Seeley, R.L., Woods, D. and Galambos, R. Auditory brainstem response in dolphins. Proc. nat. Acad. Sci. (Wash.), 1981, 78: 1943–1947.CrossRefGoogle Scholar
  26. Starr, A. and Achor, L.J. Auditory brainstem responses in neurological disease. Arch. Neurol. (Chic.), 1975, 32: 761–768.CrossRefGoogle Scholar
  27. Starr, A. and Hamilton, A. Correlation between confirmed sites of neurological lesions and abnormalities of far-field auditory brain stem response. Electroenceph. clin. Neurophysiol., 1976, 41: 595–608.Google Scholar
  28. Strother, W.S. The electrical response of the auditory mechanism in the bullfrog (Rana catesbeiana). J. comp. physiol. Psychol., 1959, 52: 157–162.CrossRefGoogle Scholar
  29. Wilczynski, W. Connections of the Midbrain Auditory Center in the Bullfrog, Rana catesbeiana. Doctoral Thesis, University of Michigan, 1978: 196 pp.Google Scholar
  30. Dusser De Barenne JG, Marshall C, Nims LF, Stone WE (1941): The response of the cerebral cortex to local application of strychnine nitrate. Am J Physiol 132: 776–780Google Scholar
  31. Gerard RW (1941): The interaction of neurones. Ohio J Sci 41: 160–172Google Scholar
  32. Makeig S, Galambos R (1989): The CERP: event-related perturbations in steady-state responses. In: Brain Dynamics: Progress and Perspectives, Balar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 375–400CrossRefGoogle Scholar
  33. Prosser CL (1936): Rhythmic activity in isolated nerve cen- ters. Cold Spring Harbor Symp Quant Biol 4: 339–346CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Jeffrey T. Corwin
    • 1
    • 2
  • Theodore H. Bullock
    • 1
  • Jeff Schweitzer
    • 1
  1. 1.Neurobiology Unit, Scripps Institution of Oceanography, and Department of Neurosciences, School of MedicineUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Zoology, Edmondson HallUniversity of HawaiiHonoluluUSA

Personalised recommendations