Skip to main content

The Auditory Brain Stem Response in Five Vertebrate Classes

  • Chapter
How do Brains Work?

Abstract

Auditory brain stem responses (ABRs) are short latency microvolt potentials evoked by acoustic stimuli and recordable by computer averaging with electrodes located centimeters from the active tissue. These responses were first recognized in cats by Jewett (1970) and soon reported from humans (Jewett et al. 1970). In the clinic ABRs have provided useful measures for hearing and for physiological evaluation of the brain stem’s integrity (Hecox and Galambos 1974; Starr and Achor 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, A.R. and Starr, A. Auditory brainstem potentials in monkey (M. mulatta) and man. Electroenceph. clin. Neurophysiol., 1978, 45: 53–63.

    Google Scholar 

  • Bell, C. Some central connections of medullary octavolateral centers in a mormyrid fish. In: W.N. Tavolga, A.N. Popper and R.R. Fay (Eds.), Hearing and Sound Communication in Fishes. Springer, Berlin, 1981: 383–392.

    Chapter  Google Scholar 

  • Biederman-Thorson, M.A. Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. Brain Res., 1970a, 24: 235–245.

    Article  Google Scholar 

  • Biederman-Thorson, M.A. Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. Brain Res., 1970b, 24: 247–256.

    Article  Google Scholar 

  • Buchwald, J.S. and Huang, C.-M. Far-field acoustic response: origins in the cat. Science, 1975, 189: 382–384.

    Article  Google Scholar 

  • Bullock, T.H. Neuroethalogy deserves more study of evoked responses. Neuroscience, 1981, 6: 1203–1215.

    Article  Google Scholar 

  • Bullock, T.H. and Corwin, J.T. Acoustic evoked activity in the brain of sharks. J. comp. Physiol., 1979, 129: 223–234.

    Article  Google Scholar 

  • Capranica, R.R. Morphology and physiology of the auditory system. In: R. Llins and W. Precht (Eds.), Frog Neurobiology. Springer, Berlin, 1976: 551–575.

    Chapter  Google Scholar 

  • Corwin, J.T. Audition in elasmobranchs. In: W.N. Tavolga, A.N. Popper and R.R. Fay (Eds.), Hearing and Sound Communication in Fishes. Springer, Berlin, 1981: 81–105.

    Chapter  Google Scholar 

  • Corwin, J.T. and Northcutt, R.G. Auditory centers in the elasmobranch brain stem: deoxyglucose autoradiography and evoked potential recording. Brain Res., 1982, 236: 261–273.

    Article  Google Scholar 

  • Frishkopf, L.S. and Goldstein, Jr., M.H. Response to acoustic stimuli from single units in the eighth nerve of the bullfrog. J. acoust. Soc. Amer., 1963, 35: 1219–1228.

    Google Scholar 

  • Galambos, R., Makeig, S. and Talmachoff, P.J. A 40-Hz auditory potential recorded from the human scalp. Proc. nat. Acad. Sci. (Wash.), 1981, 78: 2643–2647.

    Article  Google Scholar 

  • Hartline, P.H. Physiological basis for detection of sound and vibration in snakes. J. exp. Biol., 1971a, 54: 349–371.

    Google Scholar 

  • Hartline, P.H. Midbrain responses of the auditory and somatic vibration systems in snakes. J. exp. Biol., 1971b, 54: 373–390.

    Google Scholar 

  • Hecox, K. and Galambos, R. Brainstem auditory evoked responses in human infants and adults. Arch. Otolaryng., 1974, 99: 30–33.

    Article  Google Scholar 

  • Jewett, D.L. Volume conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroenceph. clin. Neurophysiol., 1970, 28: 609–618.

    Google Scholar 

  • Jewett, D.L., Romano, M.N. and Williston, J.S. Human auditory evoked potentials: possible brainstem components detected in the scalp. Science, 1970, 167: 1517–1518.

    Article  Google Scholar 

  • Laming, P.R. and Murrow, G. The contribution of the swim-bladder to audition in the roach (Rutilas rutilas). Comp. Biochem. Physiol., 1981, 69A: 537–541.

    Article  Google Scholar 

  • Liff, H. Responses from single auditory units in the eighth nerve of the leopard frog. J. acoust. Soc. Amer., 1969, 45: 512–513.

    Google Scholar 

  • Maurer, K., Schafer, E. and Leitner, H. The effect of varying stimulus polarity (rarefaction vs. condensation) on early auditory evoked potentials (EAEPs). Electroenceph. clin. Neurophysiol., 1980, 50: 332–334.

    Google Scholar 

  • Mudry, K.M., Constantine-Paton, M. and Capranica, R.R. Auditory sensitivity of the diencephalon of the leopard frog Rana pipiens. J. comp. Physiol., 1977, 114: 1–13.

    Article  Google Scholar 

  • Northcutt, R.G. Central auditory pathways in anamniote vertebrates. In: A.N. Popper and R.R. Fay (Eds.), Comparative Studies of Hearing in Vertebrates. Springer, Berlin, 1978: 79–118.

    Google Scholar 

  • Patterson, W.C. Hearing in the turtle, J. audit. Res., 1966, 6: 453–464.

    Google Scholar 

  • Picton, T.W., Hillyard, S.A., Krause, H.I. and Galambos, R. Human auditory evoked potentials. 1. Evaluation of components. Electroenceph. clin. Neurophysiol., 1974, 36: 179–190.

    Google Scholar 

  • Ridgway, S.H., Bullock, T.H., Carder, D.A., Seeley, R.L., Woods, D. and Galambos, R. Auditory brainstem response in dolphins. Proc. nat. Acad. Sci. (Wash.), 1981, 78: 1943–1947.

    Article  Google Scholar 

  • Starr, A. and Achor, L.J. Auditory brainstem responses in neurological disease. Arch. Neurol. (Chic.), 1975, 32: 761–768.

    Article  Google Scholar 

  • Starr, A. and Hamilton, A. Correlation between confirmed sites of neurological lesions and abnormalities of far-field auditory brain stem response. Electroenceph. clin. Neurophysiol., 1976, 41: 595–608.

    Google Scholar 

  • Strother, W.S. The electrical response of the auditory mechanism in the bullfrog (Rana catesbeiana). J. comp. physiol. Psychol., 1959, 52: 157–162.

    Article  Google Scholar 

  • Wilczynski, W. Connections of the Midbrain Auditory Center in the Bullfrog, Rana catesbeiana. Doctoral Thesis, University of Michigan, 1978: 196 pp.

    Google Scholar 

  • Dusser De Barenne JG, Marshall C, Nims LF, Stone WE (1941): The response of the cerebral cortex to local application of strychnine nitrate. Am J Physiol 132: 776–780

    Google Scholar 

  • Gerard RW (1941): The interaction of neurones. Ohio J Sci 41: 160–172

    Google Scholar 

  • Makeig S, Galambos R (1989): The CERP: event-related perturbations in steady-state responses. In: Brain Dynamics: Progress and Perspectives, Balar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 375–400

    Chapter  Google Scholar 

  • Prosser CL (1936): Rhythmic activity in isolated nerve cen- ters. Cold Spring Harbor Symp Quant Biol 4: 339–346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corwin, J.T., Bullock, T.H., Schweitzer, J. (1982). The Auditory Brain Stem Response in Five Vertebrate Classes. In: How do Brains Work?. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-9427-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9427-3_39

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-9429-7

  • Online ISBN: 978-1-4684-9427-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics