Commentary Neuroethology Deserves More Study of Evoked Responses

  • T. H. Bullock


Uncovering the neural basis of behavior is severely limited by applicable methods. We need both new methods and fuller exploitation of all those at hand. It is my first claim that the comparative neurological approach to what is now widely called neuroethology, has not made sufficient use of the methods of recording electrical responses time-locked to behaviorally-related events. These techniques are well established in psychophysical studies on humans and in the clinic but are little used beyond the standard laboratory animals.


Single Unit Inferior Colliculus Auditory Brainstem Response Slow Potential Single Unit Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth A., Dostrovsky J. O., Merrill E. G. and Millar, J. (1977) An improved method for insulating tungsten micro-electrodes with glass. J. Phcsiol., Lund. 269, 4 - 5.Google Scholar
  2. Ainsworth A. and O'keefe J. (1977) A lightweight microdrive for the simultaneous recording of several units in the awake. freely moving rat. J. Phvsiol., Lond. 269, 8 - 10.Google Scholar
  3. Aunon J. I. (1978) Computer techniques for the processing of evoked potentials. Computer Proyr. Biomed. 8, 243 - 255.Google Scholar
  4. Aunon J. I. and Mcgillem C. D. (1979) Detection and processing of individual components in the VEP. Psychophysiology 16, 71 - 79.CrossRefGoogle Scholar
  5. Aunon J. I. and Sencaj R. W. (1978) Comparison of different techniques for processing evoked potentials. Med. Biol. Eng. Comput. 16, 642 - 650.CrossRefGoogle Scholar
  6. Babb T. L.. Carr E. and Crandall P. H. (1973) Analysis of extracellular tiring patterns of deep temporal lobe structures in man. Electroenceph. clin. Neurophrsiol. 34, 247 - 257.Google Scholar
  7. Babb T. L. and Crandall P. H. (19761 Epileptogenesis of human limbic neurons in psychomotor epileptics. Electroenceph. clin. Veurophvsiol. 40, 225 - 243.Google Scholar
  8. Baker F. L. and York D. H. (19721A micro-electrode suspension for intracellular recording from moving tissue. Electroenceph. clin. Neurophysiol. 32, 329 - 331.Google Scholar
  9. Barber, C. (1980) Evoked Potentials. University Park Press, Baltimore, MD.Google Scholar
  10. Barrett R. (1969) Central neural response to radiant heat in certain snakes. Doctoral Dissertation. University of California, Los Angeles.Google Scholar
  11. Batuev A. S., Kclikov G. A.. Kamenskay,s V. G. and Footer L. 1. (1978) Characteristics of evoked potentials and single neuron responses in the cat sensorimotor cortex to sound stimuli with different frequencies. lira hiol. med. germ. 37, 1015 - 1024.Google Scholar
  12. Begleiter H. ed. (1979) Evoked Brain Potentials and Behavior. Plenum Press, New York.Google Scholar
  13. Biederman-Thorson M. A. (1967) Auditory responses of neurons in the lateral mesenphalic nucleus (inferior colliculus) of the Barbary dove. J. Physiol. Land. 193, 695 - 705.Google Scholar
  14. Biederman-Thorson M. A. (1969) Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. Brain Res. 24, 235 - 245.CrossRefGoogle Scholar
  15. Bodznick D. A. and Northcutt R. G. (1981) Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive. Science. N.Y 212, 465 - 467.CrossRefGoogle Scholar
  16. Brenner D., Lipton J., Kaufman L. and Williamson S. J. (1978) Somatically evoked magnetic fields of the human brain. Science, N.Y. 199, 81-83.Google Scholar
  17. Brown K. T. and Flaming D. G. (1977) New microelectrode techniques for intracellular work in small cells. Neuroscience 2, 813 - 827.CrossRefGoogle Scholar
  18. Brown P. E., Grinnell A. D. and Harrison J. B. (1978) The development of hearing in the pallid bat, Antrocous pallidus. J. comp. Physiol. 126, 169 - 182.CrossRefGoogle Scholar
  19. Bullock T. H. (1979) Processing of ampullary input in the brain: comparisons of sensitivity and evoked responses among siluroids and elasmobranchs. J. Physiol., Paris 75, 397 - 407.Google Scholar
  20. Bullock T. H. and Corwin J. T. (1979) Accoustic-evoked activity in the brain of sharks. J. comp. Physiol. 129, 223 - 234.CrossRefGoogle Scholar
  21. Bullock T. H., Domning D. P. and BestR. (1980) Evoked brain potentials demonstrate hearing in a manatee (Sirenia: Trichechus inunguis). J. Mammal. 61, 130 - 133.Google Scholar
  22. Bullock T. H., Grinnell A. D., Ikezono E.. Kameda K., Katsuki Y., Nomoto M., Sato O., Suga N. and Yanagisawa K. (1968) Electrophysiological studies of central auditory mechanisms in cetaceans. Z. vergl. Physiol. 59, 117 - 156.Google Scholar
  23. Bullock. T. H., Northcutt, R. G.. Bodznick, D. A. (1981) Evolution of electroreception. T.ends Neurosci. In press. Bullock T. H. and Ridgway S. H. (1972) Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds. J. Neurobiol. 3, 79 - 99.Google Scholar
  24. Bullock T. H., Ridgway S. H. and Suga N. (1971) Acoustically-evoked potentials in midbrain auditory structures in sea lions (Pinnipedia). Z. very'. Physiol. 74, 372-387.Google Scholar
  25. Buno JR. W., Bustamante J. and Fuentes J. (1980) Crayfish stretch receptor organs: transduction of white noise stimuli. Proc. internat. Union Physiol. Sci. XIV, 343. (Abs).Google Scholar
  26. Burger R. E., EstabilloJ.. Osborne, J., Stoll P. J. and Wallace W. (1973) Low-impedance tungsten microelectrode for recording from sensory ganglia. IEEE Trans. Biomed. Engr 20, 378 - 380.Google Scholar
  27. Callaway E., TuettngP. and Koslow S. H. (1978) Event-Related Brain Potentials in Man. Academic Press, New York. Chorover F. L. and Deluca A.11972) A sweet new multiple electrode for chronic single unit recording in moving animals. Physiol. Behan. 9, 671 - 674.Google Scholar
  28. Cohen D. (1972) Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science, N.Y. 175, 664 - 666.CrossRefGoogle Scholar
  29. Cooley R. K. and Vanderwolf C. H. (1978) Construction of wire leads and electrodes for use in slow wave recording in small animals. Brain Res. Bull. 3, 175 - 179.CrossRefGoogle Scholar
  30. Corson D. W. and Goodman S. (1979) An adaptation of the jet stream microelectrode beveler. Science. N.Y. 205, 1302.CrossRefGoogle Scholar
  31. Corwin J. T. (1980) Audition in elasmobranchs. In Hearing and Sound Communication in Fishes (eds FAY A. A., Popper A. N. and Tavolga W. N.). Springer-Verlag. New York. In press.Google Scholar
  32. Corwin, J. T., Bullock, T. H.. Schweitzer. J. (1981) The auditory brainstem response (Abri in several vertebrate classes: a physiological facet of brain evolution. Neurosci. Ah.s. In press.Google Scholar
  33. Deadwyler S. A., Biela J., Rose G., West M. and Lynch G. (1979) A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats. Electroenceph. clin. Neurophysiol. 47, 752 - 754.Google Scholar
  34. Desmedt J. E. (1977) Visual evoked potentials in man: new developments. Clarendon Press. Oxford.Google Scholar
  35. Donchin E. (1979) Event-related brain potentials: a tool in the study of human information processing. In Evoked Brain Potentials and Behavior (ed. Begleiter H. ). Plenum Press, New York.Google Scholar
  36. Echteler S. M. and Saidel W. M. (1981) Forebrain projections in the goldfish support telencephalic homologies with land vertebrates. Science. N.Y In Press.Google Scholar
  37. Farrell D. W., Tripp J. H.. Norgren R. and Teyler T. J. (1980) A study of the auditory-evoked magnetic field of the human brain. Electroenceph. clin. Neurophysiol. 49, 31 - 38.Google Scholar
  38. Ferris C. D. (1974) Introduction to Bioelectrodes. Plenum Press, New York.CrossRefGoogle Scholar
  39. Freeman J. A. and Nicholson C. (1975) Experimental optimization of current source-density technique for anuran cerebellum. J. Neurophysiol. 38, 369 - 382.Google Scholar
  40. Freeman J. A. and Stone J. (19691 A technique for current density analysis of field potentials and its application to the frog cerebellum. InNeurobiology of Cerebellar Evolution and Development (ed. Lianas R.)pp. 421-430. American Medical Association, Chicago.Google Scholar
  41. Galambos R. and Hecox K. ( 1971 Clinical applications of the brain stem auditory-evoked potentials in man. In Psychopharmacological Correlates at' Evoked Potentials (ed. Desmfdt J. E.1 Vol. 2, pp. t-9. Karger. Basel.Google Scholar
  42. Galambos R. and Hillyard S. A. (1981) Electrophysiological approaches to cognitive processing. Neurosci. Res. Prog. Bull., in press.Google Scholar
  43. Geddes L. A. (1972) Electrodes and the Measurement of Bioelectric Events. John Wiley, New York.Google Scholar
  44. Gerken G. M. (1978) Brain stem-evoked potentials and auditory analysis of single cycle transients. In Evoked Electrica Activity in the Auditory;Venous System (eds Nauton R. and Fernandez C. ) pp. 409 - 413. Academic Press, London.Google Scholar
  45. Goris R. C. and Terashima S. (1973) Central response to infrared stimulation of the pit receptors in a crotaline snake, Trimeresurus flaroviridis. J. exp. Biol. 58, 59 - 76.Google Scholar
  46. Grinnell A. D. (1970) Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Z. uergl. Physiol. 68. 117 - 153.Google Scholar
  47. Grünewald-ZuberbierE. and GrünewaldG. (1978) Goal-directed movement potentials of human cerebral cortex. Expl Brain Res. 33, 135 - 138.CrossRefGoogle Scholar
  48. Hartline P. H. (1971a) Physiological basis for detection of sound and vibration in snakes. J. exp. Biol. 54, 349 - 371.Google Scholar
  49. Hartline P. H. (1971h) Midbrain responses of the auditory and somatic vibration systems in snakes. J. exp. Biol. 54, 373-390.Google Scholar
  50. Hartline P. H. (1974) Thermoreceptors in snakes. In Handbook of Sensory Physiology III/3 (ed. Fessard A. ) pp. 297 - 312. Springer-Verlag, New York.Google Scholar
  51. Hartline P. H. and Campbell H. W. (1969) Auditory and vibratory responses in the midbrains of snakes. Science, N.Y. 163, 1221 - 1223.CrossRefGoogle Scholar
  52. Hartline P. H. and Lange G. D. (1977) Sinusoidal analysis of electroretinogram of squid and octopus. J. Neurophysiol. 40, 174 - 187.Google Scholar
  53. Huang C.-M. and Buchwald J. S. (1978) Factors that affect the amplitudes and latencies of the vertex short latency acoustic responses in the cat. Electroenceph. clin. Neurophysiol. 44, 179 - 186.Google Scholar
  54. Jewett D. L. and Williston J. S. (1971) Auditory-evoked far fields averaged from the scalp of human. Brain 94, 681 - 696.CrossRefGoogle Scholar
  55. Laird H. E. II, Hermansen J. E. and Huxtable R. J. (1979) Apparatus for EEG recording and electrical stimulation of discrete brain areas in an unrestrained small animal. Brain Res. Bull. 4, 283 - 284.CrossRefGoogle Scholar
  56. Mcdonald M. (1964) A system for stabilizing evoked potentials obtained in the brain stem of the cat. Med. Electron. Biol. Eng. 2, 417 - 423.CrossRefGoogle Scholar
  57. Marmarelis P. Z. and Marmarelis V. Z. (1978) Analysis of Physiological Systems: The White Noise Approach. Plenum Press, New York.CrossRefGoogle Scholar
  58. Merzenich M. M., Gard J. M. and Vivion M. C. (1980) Non-invasively recorded auditory-evoked responses in animals: some practical uses. In Nincds Handbook of Electrocochleoyraphy and Brain Stern Electrical Responses (ed. MOORE E.). Nincds, Bethesda, in press.Google Scholar
  59. Mitzdoorf U. and Singer W. (1979) Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically-evoked potentials. J. comp. Neuro). 187, 71 - 84.CrossRefGoogle Scholar
  60. Morrow T. J. (1980) Improved technique for recording single unit activity in awake animals. Brain Res. Bull. 6, 91 - 93.Google Scholar
  61. Muschaweck L. G. and Loevner D. (1978) Analysis of neuronal spike trains: survey of stochastic techniques and implementation of the cumulative-sums statistic for evaluation of spontaneous and driven activity. Int. J. Neurosci. 8, 51 - 60.CrossRefGoogle Scholar
  62. Naunton R. F. and Fernandez C. (1978) Evoked Electrical.4cticit ìn the Auditory Nervous System. Academic Press, New York.Google Scholar
  63. Nicholson C. and Freeman J. A. (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J. N europhysiol. 38, 356 - 368.Google Scholar
  64. Northcutt R. G., Bodzntck D. A. and Bullock T. H. (1980) Most non-teleost fishes have electroreception. Proc. Internat. Union Physiol. Sci., Budapest. XIV (2633), 614.Google Scholar
  65. Okeefe J. and Bouma H. (1969) Complex sensory properties of certain amygdala units in the freely moving cat. Expl. Neurol. 23, 384 - 398.CrossRefGoogle Scholar
  66. Oomura Y., Ooy.Ama H., Naka F. and Yamamoto T. (1967) Microelectrode positioners for chronic animals. Physiol. Behan. 2, 89-91.Google Scholar
  67. Otto D. A. (1978) Multidisciplinary Perspectives in Event-Related Brain Potential Research. U.S. Environmental Protection Agency No. EPA-6009-77-043, Washington, DC.Google Scholar
  68. Palmer C. A. (1978) Microwire technique for recording single neurons in unrestrained animals. Brain Res. Bull. 3, 285-289.Google Scholar
  69. Parker T. D., Strachan D. D. and Welker W. I. (1973) Tungsten ball microelectrode for extracellular single-unit recording. Electroenceph. clip. Neurophysiol. 35, 647-651.Google Scholar
  70. Perry N. W. and Childers D. G. (1969) The Human Visual-Evoked Response. Method and Theory. C. C. Thomas, Springfield.Google Scholar
  71. Pickard R. S. (1979). A review of printed circuit microelectrodes and their production. J. Neurosci.,Meth. 1, 301 - 318.CrossRefGoogle Scholar
  72. Platt C. J., Bullock T. H., Czeh G.. Kovacevtü N., Konjevic D. J. and Goikovic M. (1974) Comparison of electroreceptor, mechanoreceptor and optic-evoked potentials in the brain of some rays and sharks. J. comp. Physiol. 95, 323-355.Google Scholar
  73. Regan D. (1972) Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine. Chapman and Hall, London. Regan D. (1977) Steady-state evoked potentials. J. Opt. Soc. Am. 67, 1475-1494.Google Scholar
  74. Ridgway S. H., Bullock T. H., Carder D. A., Seeley R. L., Woods D. and Galambos R. (1980) Extra-cranial brainstem responses (ABR) in cetaceans. Proc. Internat. Union Physiol. Sci., Budapest XIV (2927), 663.Google Scholar
  75. Ridgway S. H., Bullock T. H., Carder D. A., Seeley R. L.. WooDS, D. and Galambos R. 119811 Auditory brainstem response in dolphins. Proe..Vain Acad. Sci., U.S.A. 78, 1943 - 1947.Google Scholar
  76. Rose J. D. and Weishaar D. J. (1979) Tapered tungsten fine-wire microelectrode for chronic single unit recording. Brain Res. Bull. 4, 435-437.Google Scholar
  77. Ruchkin D. S. (1968) Analysis of nonhomogeneous sequences of evoked potentials. Expl Neurol. 20, 275 - 284.CrossRefGoogle Scholar
  78. Sencaj R. W.. Aunon J. I. and Mcgillem C. D. (1979) Discrimination among visual stimuli by classification of their single evoked potentials. Med. Biol. Eng. Comput. 17, 391-396.Google Scholar
  79. Shagass C. (1972) Evoked Brain Potentials in Psychiatry. Plenum Press, New York.CrossRefGoogle Scholar
  80. Skydell J. L. and Capranica R. R. (1975) A chronic electrode implantation technique for sub-mammalian vertebrates. Electroenceph. clin. Neurophysiol. 38, 325-328.Google Scholar
  81. Sokol S. (1978) Measurement of infant visual acuity from pattern reversal evoked potentials. Visual Res. 18, 33 - 39.Google Scholar
  82. Spunda J., Weiss-RadilT. and Radilova J. (1975) A technique for on-line classification of evoked potentials into two groups according to subjective interpretation of the stimulus. Electroenceph. clin. Neurophysiol. 39, 411-413.Google Scholar
  83. Starr A. and Achor J. (1978) The generators of the auditory brainstem potentials as revealed by brainstem lesions. In Evoked Electrical Activity in the Auditory Nervous System (eds NAUNTON R. F. and FERNANDEZ C. ) pp. 443 - 452. Aca- demic Press, New York.Google Scholar
  84. Starr A. and Achor L. J. (1979) Anatomical and physiological origins of auditory brain stem responses (ABR). In Human Evoked Potentials (eds Lehmann D. and Callaway E. ) pp. 415 - 429. Plenum Press, New York.CrossRefGoogle Scholar
  85. Suga N. (1969) Echo-location and evoked potentials of bats after ablation of inferior colliculus. J. Physiol., Lond. 203, 707 - 728.Google Scholar
  86. Terashtma S. and Goris R. C. (1975) Tectal organization of pit viper infrared reception. Brain Res. 83, 490 - 494.CrossRefGoogle Scholar
  87. ThompsonR. F. and Patterson M. M. (1973) Bioelectric Recording Techniques. Part A. Cellular Processes and Brain Potentials. Academic Press, New York.Google Scholar
  88. Vertes R. P. (1975) A device for recording single unit activity in freely-moving rats by a movable fine-wire microelectrode. Electroenceph. clin. Neurophysiol. 38, 90-92.Google Scholar
  89. Vtcror J. D. (1979) Non-linear systems analysis: comparisons of white noise and sum of sinusoids in a biological system. Proc. Natn Acad. Sci., U.S.A. 76, 996-998.Google Scholar
  90. VonHolst E. (1950) Quantitative Messung von Stimmungen im Verhalten der Fische. Symp. Soc. exp. Biol. 4, 143 - 172.Google Scholar
  91. Wiemer W., Kaack D. and Kezdi P. (1975) Comparative evaluation of methods for quantification of neural activity. Med. Biol. Eng. 13, 358-369.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • T. H. Bullock
    • 1
  1. 1.Neurobiology Unit, Scripps Institution of Oceanography and Department of Neurosciences, School of MedicineUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations