Auditory brainstem response in dolphins

  • S. H. Ridgway
  • T. H. Bullock
  • D. A. Carder
  • R. L. Seeley
  • D. Woods
  • R. Galambos


We recorded the auditory brainstem response (ABR) in four dolphins (Tursiops trurtcatua and Delphinus delphia). The ABR evoked by clicks consists of seven waves within 10 msec; two waves often contain dual peaks. The main waves can be identified with those of humans and laboratory mammals; in spite of a much longer path, the latencies of the peaks are almost identical to those of the rat. The dolphin ABR waves increase in latency as the intensity of a sound decreases by only 4 /decibel (dB) (for clicks with peak power at 66 kHz) compared to 40 µsec/dB in humans (for clicks in the sonic range). Low-frequency clicks (6-kHz peak power) show a latency increase about 3 times (12 µsec/dB) as great. Although the dolphin brainstem tracks individual clicks to at least 600 per sec, the latency increases and amplitude decreases with increasing click rates. This effect varies among different waves of the ABR; it is around one-fifth the effect seen in man. The dolphin brain is specialized for handling brief, frequent clicks. A small latency difference is seen between clicks 180° different in phase—i.e., with initial compression vs. initial rarefaction. The ABR can be used to test theories of dolphin sonar signal processing. Hearing thresholds can be evaluated rapidly. Cetaceans that have not been investigated can now be examined, including the great whales, a group for which data are now completely lacking.


Auditory Brainstem Response Cochlear Nucleus Common Dolphin Initial Compression Lateral Lemniscus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Au, W. W. L. (1980) in Animal Sonar Systems, eds. Busnel, R. G. and Fish, J. F. ( Plenum, New York ), pp. 251–282.Google Scholar
  2. 2.
    Norris, K. S. (1964) in Marine Bio-acoustics, ed. Tavolga. W. N. ( Pergamon, New York ), pp. 317–336.Google Scholar
  3. 3.
    Evans, W. E. and Powell, B. A. (1966) in Animal Sonar Systems, Biology and Bionics,ed. Busnel, R. G. (Laboratorie de Physiologie Acoustique, Jouy-en-Josas 78, France), pp. 363–382.Google Scholar
  4. 4.
    Johnson, C. S. (1966) U.S. Naval Ordnance Test Station Reports,NOTS TP 4178.Google Scholar
  5. 5.
    Sukhoruchenko, M. N. (1973) FizioL Zh. SSSR im.1..M. Sechenova 59, 1205–1210.Google Scholar
  6. 6.
    Bullock, T. H., Grinnell, A. D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N. and Yanagisawa. K. (1968) Z. VgL Ph ysioL 59, 117–156.Google Scholar
  7. 7.
    Bullock, T. H. and Ridgway, S. H. (1972) J. Neurobiol. 3, 79–99.CrossRefGoogle Scholar
  8. 8.
    Bullock, T. H. and Gurevich, V. S. (1979) Int. Rev. Neurobiol. 21, 48–127.Google Scholar
  9. 9.
    Seeley, R. L., Flanigan, W. F. and Ridgway, S. H. (1976) Naval Undersea Center TP 552 (San Diego).Google Scholar
  10. 10.
    Ridgway, S. H. (1980) in Animal Sonar Systems, eds. Busnel, R. G. and Fish, J. F. ( Plenum, New York ), pp. 483–494.Google Scholar
  11. 11.
    Jewett, D. L. and Williston, J. E. (1971) Brain 94, 681–696.CrossRefGoogle Scholar
  12. 12.
    Galambos, R. and Hecos, K. (1977) in Psychopharmacological Correlates of Evoked Potentials, ed. Desmedt, J. R. (Karger, Basel, Switzerland), Vol, 2, pp. 1–19.Google Scholar
  13. 13.
    Starr, A. and Achor, J. (1978) in Evoked Electrical Activity in the Auditory:Nervous System, eds. Naunton, R. and Fernandez, C. ( Academic, London ), pp. 443–452.Google Scholar
  14. 14.
    Allen, A. R. and Starr, A. (1978) Electroencephalogr. Clin. NeurophysioL 45, 53–63.CrossRefGoogle Scholar
  15. 15.
    Ridgway, S. H. and Dailey. M. D. (1972) J. Wild Dis. 8, 33–43.Google Scholar
  16. 16.
    Coats, A. C. and Martin, J. L. (1977) Arch. OtolaryngoL 103, 605–622.Google Scholar
  17. 17.
    Don, M., Allen, R. and Starr, A. (1977) Ann. OtoL Rhinol. Laryngot 86, 186–196.Google Scholar
  18. 18.
    Haung, C. M. and Buchwald, J. S. (1978) Electroencephalogr. Clin. NeurophysioL 44, 179–186.Google Scholar
  19. 19.
    Zvorykin, V. P. (1963) Arkh. Anat. Gistol. EmbrioL 45, 3–17.Google Scholar
  20. 20.
    Zvorykin, V P. (1971) Arkh. Anat. GistoL EmbrioL 60, 50–62.Google Scholar
  21. 21.
    DeGraaf, A. S. (1967) Anatomical Aspects of the Cetacean Brain Stern (Von Gorcum, Assen, Netherlands).Google Scholar
  22. 22.
    Suga, N. (1969) J. Physiol. 203, 707–728.Google Scholar
  23. 23.
    Grinnell, A. D. (1973) J. Physiol. 167, 38–66.Google Scholar
  24. 24.
    Suga, N. (1970) Science 170, 449–451.CrossRefGoogle Scholar
  25. 25.
    Gerken, G. M. (1978) in Evoked Electrical Activity in the Auditory Nervous System, eds. Naunton, R. and Fernandez, C. ( Academic, London ), pp. 409–413.Google Scholar
  26. 26.
    Busnel, R. G. and Fish, J. F., eds. (1980) Animal Sonar Systems ( Plenum, New York ).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • S. H. Ridgway
    • 1
  • T. H. Bullock
    • 2
  • D. A. Carder
    • 1
  • R. L. Seeley
    • 1
  • D. Woods
    • 2
  • R. Galambos
    • 2
  1. 1.Naval Ocean Systems CenterSan DiegoUSA
  2. 2.Neurobiology Unit. Scripps Institution of Oceanography and Department of Neurosciences, School of MedicineUniversity of California at San DiegoLa JollaUSA

Personalised recommendations