Physiology of lateral line mechanoreceptive regions in the elasmobranch brain

  • H. Bleckmann
  • O. Weiss
  • T. H. Bullock


The physiology of mechanoreceptive lateral line areas was investigated in the thornback guitarfish, Platyrhinoidis triseriata, from medulla to telencephalon, using averaged evoked potentials (AEPs) and unit responses as windows to brain functions. Responses were analysed with respect to frequency sensitivity, intensity functions, influence of stimulus repetition rate, response latency, receptive field (RF) organization and multimodal interaction.


Receptive Field Lateral Line Lateral Line System Torus Semicircularis Lateral Line Canal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alnaes E (1973) Unit activity of ganglionic and medullary second order neurons in the eel lateral line system. Acta Physiol Scand 88: 49–61CrossRefGoogle Scholar
  2. Bleckmann H (1986) Role of the lateral line in fish behavior. In: Pitcher TJ (ed) The behaviour of teleost fishes. Croom Helm, London Sydney. pp 177–202CrossRefGoogle Scholar
  3. Bleckmann H, Bullock TH (in press) Central physiology of the lateral line system, with special reference to elasmobranchs. In: Coombs S. Görner P, Münz H (eds) Neurobiology and evolution of the lateral line system. Springer, New York Berlin TokyoGoogle Scholar
  4. Bleckmann H, Bullock TH, Jorgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrlvnoidi.s triseriata ( Elasmobranchii ). J Comp Physiol A 161: 67–84Google Scholar
  5. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line system of the topminnow Aplocheilu.c !Meatus. Naturwissenschaften 68: 624–625CrossRefGoogle Scholar
  6. Bodznick DA, Northcutt RG (1980) Segregation of electroand mechanoreceptive inputs to the elasmobranch medulla. Brain Res 195: 313–322CrossRefGoogle Scholar
  7. Bodznick DA, Northcutt RG (1984) An electrosensory area in the telencephalon of the little skate. Raja erinacea. Brain Res 298: 117–124CrossRefGoogle Scholar
  8. Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skate Raja eglanteria. J Comp Neurol 207: 274–282CrossRefGoogle Scholar
  9. Bullock TH (1981) Comparisons of the electric and acoustic senses and their central processing. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 525–572CrossRefGoogle Scholar
  10. Bullock TH (1986) Interspecific comparison of brainstem auditory evoked potentials and frequency following responses among vertebrate classes. In: Cracco RQ, Bodis-Wollner I (eds) Evoked potentials. Alan R Liss, New York, pp 155164Google Scholar
  11. Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol 127: 61–74CrossRefGoogle Scholar
  12. Callens M, Vandenbusche E, Greenway Ph (1967) Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurones. Arch Int Physiol Biochem 75: 148–150Google Scholar
  13. Carr CE, Maler L, Heiligenberg W, Sas E (1981) Laminar organization of the afferent and efferent system of the torus semicircularis of gymnotid fish morphological substrates for parallel processing in the electrosensory system. J Comp Neurol 203: 649–670CrossRefGoogle Scholar
  14. Corwin IT, Northcutt RG (1982) Auditory centers in the elasmobranch brain: deoxyglucose localization and evoked potential recording. Brain Res 236: 261–273CrossRefGoogle Scholar
  15. Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38: 51–106CrossRefGoogle Scholar
  16. Dowben RM, Rose JE (1953) A metal-filled microelectrode. Science 118: 22CrossRefGoogle Scholar
  17. Echteler SM (1985a) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A 156: 267–280CrossRefGoogle Scholar
  18. Echteler SM (1985b) Tonotopic organization in the midbrain of a teleost fish. Brain Res 338: 387–391CrossRefGoogle Scholar
  19. Elepfandt A, Wiedemer L (1987) Lateral-line response to water surface waves in the clawed frog, Venopus laevis. J Comp Physiol A 160: 667–682CrossRefGoogle Scholar
  20. Fiebig E (1988) Connections of the corpus cerebelli in the thorn-back guitarfish, Platyrhinoidis triseriata (Elasmobranchii). Study with WGA-HRP and extracellular granule cell recording. J Comp Neurol 268: 567–583CrossRefGoogle Scholar
  21. Finger TE. Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nehulosus: evoked potential evidence. J Neurobiol 13: 39–47CrossRefGoogle Scholar
  22. Fuzessery ZM, Feng AS (1981) Frequency representation in the dorsal medullary nucleus of the leopard frog, Rana p. pipiens. J Comp Physiol 143: 339–347CrossRefGoogle Scholar
  23. Gray SJ (1984) Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proc R Soc Lond B 220: 299–325CrossRefGoogle Scholar
  24. Harris G, Bergeijk A van (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. 1 Acoust Soc Am 34: 1831–1841Google Scholar
  25. Heiligenberg W (1988) Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish. Brain Behav Evol 31: 6–16CrossRefGoogle Scholar
  26. Hoagland H (1935) Electrical responses from the lateral line nerves of fishes. V. Responses in the central nervous system. J Gen Physiol 18: 89–91CrossRefGoogle Scholar
  27. Hoin-Radkovski L Bleckmann H, Schwartz E (1984) Determination of source distance in the surface-feeding fish Pantodon huchho/zi ( Pantodontidae ). Anim Behav 32: 840–851Google Scholar
  28. Kalmijn A (1988) Hydrodynamic and acoustic field detection in elasmobranch and teleost fishes. In: Atema J, Fay RR.Google Scholar
  29. Popper A, Tavolga W (eds) Sensory biology of aquatic animals. Springer, New York Berlin Tokyo, pp 83–130Google Scholar
  30. Knudsen EI (1976) Midbrain responses to electroreceptive input in catfish. Evidence of orientation preferences and somatotopic organization. J Comp Physiol 106: 51–67CrossRefGoogle Scholar
  31. Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173: 417–432CrossRefGoogle Scholar
  32. Knudsen EI (1978) Functional organization in electroreceptive midbrain of the catfish. J Neurophysiol 41: 350–364Google Scholar
  33. Kuiper JW (1967) Frequency characteristics and functional significance of the lateral line organ. In: Cahn PhH (ed) Lateral line detectors. Indiana University Press, Bloomington London, pp 105–121Google Scholar
  34. Lowe DA (1987) Single unit study of lateral line cells in the optic tectum of Xenopus laevis: evidence for bimodal lateral line/optic units. J Comp Neurol 257: 396–404CrossRefGoogle Scholar
  35. Manley JA (1971) Single unit studies in the midbrain auditory area of caiman. Z Vergl Physiol 71: 255–261CrossRefGoogle Scholar
  36. Merzenich MM, Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Res 77: 397–415CrossRefGoogle Scholar
  37. Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568CrossRefGoogle Scholar
  38. Nederstigt LJA, Schellart NAM (1986) Acousticolateral processing in the torus semicircularis of the trout Salmo gairdneri. Pflügers Arch 406: 151–157CrossRefGoogle Scholar
  39. Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Office of Naval Research, Arlington, Va, pp 117–193Google Scholar
  40. Paul DH, Roberts BL (1977a) Studies on a primitive cerebellar cortex. II. The projection of the posterior lateral line nerve to the lateral line lobes of the dogfish brain. Proc R Soc Lond B 195: 467–478Google Scholar
  41. Paul DH, Roberts BL ( 1977 b) Studies on a primitive cerebellar cortex. III. The projection of the anterior lateral line nerve to the lateral line lobes of the dogfish brain. Proc R Soc Lond B 195: 479–496Google Scholar
  42. Pettigrew AG, Anson M, Chung SH (1981) Hearing in the frog: a neurophysiological study of the auditory response in the midbrain. Proc R Soc Lond B 212: 433–457CrossRefGoogle Scholar
  43. Platt CJ, Bullock TH, Czéh G, Kovaeevié N, Konjevie Dj, Gojkovié M (1974) Comparison of electroreceptor, mechanoreceptor, and optic evoked potentials in the brain of some rays and sharks. J Comp Physiol 95: 323–355CrossRefGoogle Scholar
  44. Roberts BL (1981) Central processing of acousticolateralis signals in elasmobranchs. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 357–372CrossRefGoogle Scholar
  45. Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 459–480CrossRefGoogle Scholar
  46. Scheich H, Bonke BA, Langner G (1979) Functional organization of some auditory nuclei in the Guinea fowl demonstrated by the 2-deoxyglucose technique. Cell Tissue Res 204: 17027CrossRefGoogle Scholar
  47. Schweitzer J (1983) The physiological and anatomical localization of two electroreceptive diencephalic nuclei in the thorn-back ray, Platyrhinoidis triseriata. J Comp Physiol 153: 331–341CrossRefGoogle Scholar
  48. Schweitzer J (1986) Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata): a single unit study. J Comp Physiol A 158: 43–58CrossRefGoogle Scholar
  49. Topp G (1983) Primary lateral line responses to water surface waves in the topminnow A. lineatus (Pisces, Cyprinodontidae). Pflügers Arch 397: 62–67CrossRefGoogle Scholar
  50. Zittlau KE, Claas B, Münz H, Görner P (1985) Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis. Neurosci Lett 60: 77–81CrossRefGoogle Scholar
  51. Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158: 469–477CrossRefGoogle Scholar
  52. Babu KS (1964): Through-conducting systems in ventral nerve cord of centipedes. Z Vgl Physiol 49: 114 - 129CrossRefGoogle Scholar
  53. Bastian J (1974): Electrosensory input to the corpus cerebelli of the high frequency electric fish Eigenmannia virescens. J Comp Physiol 90: 1 - 24CrossRefGoogle Scholar
  54. Bastian J (1975): Receptive fields of cerebellar cells receiving exteroceptive input in a gymnotid fish. J Neurophysiol 38: 285 - 300Google Scholar
  55. Bastian J (1976): The range of electrolocation: a comparison of electroreceptor responses and the response of cerebellar neurons in a gymnotid fish. J Comp Physiol 108: 193 - 210CrossRefGoogle Scholar
  56. Baxter C, Pickens PE (1964): Control of luminescence in hemichordates and some properties of a nerve net system. J Exp Blot 41: 1 - 14Google Scholar
  57. Behrend K (1977): Processing information carried in a high frequency wave: properties of cerebellar units in a high frequency electric fish. J Comp Physiol 118: 357 - 371CrossRefGoogle Scholar
  58. Berkowitz EC (1956): Functional properties of spinal pathways in the carp, Cyprinus carpio L. J Comp Neurol 106: 269 - 289CrossRefGoogle Scholar
  59. Biederman-Thorson M (1967): Auditory responses of neurons in the lateral mesenphalic nucleus (inferiorcolliculus) of the Barbary dove. J Physiol 193: 695 - 705Google Scholar
  60. Biederman-Thorson M (1970a): Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. Brain Res 24: 235 - 245CrossRefGoogle Scholar
  61. Biederman-Thorson M (1970b): Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. Brain Res 24: 247 - 256CrossRefGoogle Scholar
  62. Bombardieri RA, Feng AS (1977): Deficit in object detection (electrolocation) following interruption of cerebellar function in the weakly electric fish Apteronotus albifrons. Brain Res 130: 343 - 347CrossRefGoogle Scholar
  63. Corwin JT (1981): Audition in elasmobranchs. In: Hearing and Sound Commrurication in Fishes, Tavolga WN, Popper AN, Fay RR, eds. New York: Springer-Verlag, pp 81 - 105CrossRefGoogle Scholar
  64. Crispino L (1983): Modification of responses from specific sensory systems in midbrain by cerebellar stimulation: experiments on a teleost fish. J Neurophysiol 49: 3 - 15Google Scholar
  65. Davis RE, Kassel J (1983): Behavioral functions of the teleostean telencephalon. In: Fish Neurobiology, Vol. 2: Higher Brain Areas and Functions, Davis RE, Northcutt RG, eds. Ann Arbor: The University of Michigan Press, pp 237 - 263Google Scholar
  66. Echteler SM (1985): Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol 156: 267 - 280CrossRefGoogle Scholar
  67. Fiebig E (1988): Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): a study using WGA-HRP and extracellular granule cell recording. J Comp Neurol 268: 567 - 583CrossRefGoogle Scholar
  68. GrüsserO-J, Grösser-ComehlsU (1968): Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vgl Physiol 59: 1 - 24CrossRefGoogle Scholar
  69. Grösser O-J, Finkelstein D, Griisser-Cornehls U (1968): The effect of stimulus velocity on the response of movement sensitive neurons of the frog's retina. PfliigersArch 300: 49 - 66CrossRefGoogle Scholar
  70. Heiligenberg WF (1977): Principles of electrolocation and jamming avoidance in electric fish. A neuroethological approach. In: Studies of Brain Function, Voll, Braitenberg V et al, eds. Berlin: Springer-Verlag, pp 1 - 84Google Scholar
  71. Hubel DH, Wiesel TN (1962): Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160: 106 - 154Google Scholar
  72. Jensen DW (1979a): Reflex control of acute postural asymmetry and compensatory symmetry after a unilateral vestibular lesion. Neuroscience 4: 1059 - 1073CrossRefGoogle Scholar
  73. Jensen DW (1979b): Vestibular compensation: tonic spinal cord influence upon spontaneous descending vestibularGoogle Scholar
  74. nuclear activity. Neuroscience 4:1075-1084Google Scholar
  75. Jensen DW (1985): Posture-correlated responses to vestibular polarization in vermal versus intermediate posterior cerebellum cortex. Exp Neurol 8: 629 - 639CrossRefGoogle Scholar
  76. Josephson RK (1961): Colonial responses of hydroid polyps. J Exp Biol 38: 559 - 577Google Scholar
  77. Josephson RK, Reiss RF, Worthy RM (1961): A simulation study of a diffuse conducting system based on coelenterate nerve nets. J Theor Biol 1: 460 - 487Google Scholar
  78. Lashley KS (1949): Persistent problems in evolution of the mind. Quart Rev Biol 24: 28 - 42CrossRefGoogle Scholar
  79. Lee LT (1984): Response of the cerebellum to stimulation of the telencephalon in the catfish (Ictalurus nebulosus). J Neurophysiol 51: 1394 - 1408Google Scholar
  80. Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960): Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43: 129 - 175Google Scholar
  81. Maynard DM Jr (1955): Activity in a crustacean ganglion. II. Pattern and interaction in burst formation. Biol Bull 109: 420 - 436CrossRefGoogle Scholar
  82. Maynard DM Jr (1961): Cardiac inhibition in decapod crustacea. In: Nervous Inhibitions, Florey E, ed. Oxford: Pergamon Press, pp 144 - 178Google Scholar
  83. Meyer DL, Graf W, Seydlitz-Kurzbach U (1979): The role of integrators in maintaining actively assumed abnormal postures. A study of postural mechanisms in geckos. J Comp Physiol 131: 235 - 246CrossRefGoogle Scholar
  84. Murphy MR, Maclean PD, Hamilton SC (1981): Species-typical behavior of hamsters deprived from birth of the neocortex. Science 213: 459 - 461CrossRefGoogle Scholar
  85. Overmier JB, Hollis KL(1983): The teleostean telencephalon in learning. In: Fish Neurobiology, Vol 2: Higher Brain Areas and Functions, Davis RE, Northcutt RG, eds. Ann Arbor: The University of Michigan Press, pp 265 - 284Google Scholar
  86. Palka J (1965): Diffraction and visual acuity of insects. Science 149: 551 - 553CrossRefGoogle Scholar
  87. Palka J (1967): An inhibitory process influencing visual responses in a fibre of the ventral nerve cord of locusts...I Insect Physiol 13: 235 - 248CrossRefGoogle Scholar
  88. Roberts A (1968a): Recurrent inhibition in the giant-fibre system of the crayfish and its effect on the excitability of the escape response. J Exp Biol 48: 545 - 567Google Scholar
  89. Roberts A (1968b): Some features of the central co-ordination of a fast movement in the crayfish. JExp Bio149:645-656Google Scholar
  90. Sandeman DC (1965): Electrical activity in the radial nerve cord and ampullae of sea urchins. J Exp Bio143:247-256Google Scholar
  91. Schaefer K-P, Meyer DL, Wilhelms G (1979): Somatosensory and cerebellar influences on compensation of labyrinthine lesions. Prog Brain Res 50: 591 - 598CrossRefGoogle Scholar
  92. Scheich H (1974): Neuronal analysis of wave form in the time domain: midbrain units in electric fish during social behavior. Science 185: 365 - 367CrossRefGoogle Scholar
  93. Schweitzer J (1986): The neural basis of electroreception in elasmobranchs. In: Indo-Pacific Fish Biology, Uyeno T, Arai R, Taniuchi T, Matsuura K, eds. Tokyo: Ichthyological Society of Japan, pp 392 - 407Google Scholar
  94. Segaar J (1961): Telencephalon and behaviour in Gasterosteus aculeatus. Behaviour 28: 256 - 287CrossRefGoogle Scholar
  95. Suga N (1969): Echo-location of bats after ablation of auditory cortex. J Physiol 203: 729 - 739Google Scholar
  96. Suga N (1972): Neurophysiological analysis of echolocation in bats. In: AnimalOrientation and Navigation, Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE, eds. Washington DC: NASA, US Government Printing Office, pp 341 - 353Google Scholar
  97. Suga N (1973): Feature extraction in the auditory system of bats. In: Basic Mechanisms in Hearing, Moller AR, Boston P, eds. New York: Academic Press, pp 675 - 744CrossRefGoogle Scholar
  98. Suga N, Olsen JF, Butman JA (1990): Specialized subsystems for processing biologically important complex sounds: cross-correlation analysis for ranging in the bat's brain. Cold Spring Harbor Symp Quant Biol LV:585-597Google Scholar
  99. Thorson J (1964): Dynamics of motion perception in the desert locust. Science 145: 69 - 71CrossRefGoogle Scholar
  100. Thorson J (1966a): Small-signal analysis of a visual reflex in the locust. I. Input parameters. Kybernetik 3: 41 - 53CrossRefGoogle Scholar
  101. Thorson J (1966b): Small-signal analysis of a visual reflex in the locust. II. Frequency dependence. Kybernetik 3: 53 - 66CrossRefGoogle Scholar
  102. Trujillo-Cen6z 0 (1965): Some aspects of the structural organization of the intermediate retina of dipterans. J Ultrastruct Res 13: 1 - 33CrossRefGoogle Scholar
  103. Waterman TH, Wiersma CAG (1963): Electrical responses in decapod crustacean visual systems. J Cell Comp Physiol 61: 1 - 16CrossRefGoogle Scholar
  104. Wilson DM (1961): The connections between the lateral giant fibers of earthworms. Comp Biochem Physiol 3: 274 - 284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • H. Bleckmann
    • 1
    • 2
  • O. Weiss
    • 1
    • 3
  • T. H. Bullock
    • 1
  1. 1.Neurobiology Unit, Scripps Institution of Oceanography and Department of NeurosciencesSchool of Medicine, University of California, San Diego, La JollaUSA
  2. 2.Fakultät für Biologie IIUniversität BielefeldBielefeld 1Federal Republic of Germany
  3. 3.Abteilung Anatomie der Medizinischen Fakultät Universität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations